
EE 231  Fall 2010 

 

1 

 

EE 231 Lab 5 
 

Arithmetic Logic Unit 
 

The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part of the 

computer which performs arithmetic operations on numbers, e.g. addition, subtraction, etc. 

In this lab you will use the Verilog language to implement an ALU having 10 functions. 

Use of the case structure will make this job easy. 

 

 
Figure 1. ALU Block Diagram 

 

The ALU that you will build (see Figure 1) will perform 10 functions on 8-bit inputs (see 

Table 1). Please make sure you use the same variable name as the ones used in this lab. 

Don’t make your own. The ALU will generate an 8-bit result (result), a one bit carry (C), 

and a one bit zero-bit (Z). To select which of the 10 functions to implement you will use 

ALU CTL as the selection lines. 

 

Table 1.  ALU Functions 

 



EE 231  Fall 2010 

 

2 

 

 

 

 
 

1. Prelab 

1. Fill out Table 1. 

2. Write a Verilog program to implement the ALU. 

2. Lab 

1. Design the ALU using Verilog. (Make sure you deal with any unused bit 

combinations of the ALU_CTL lines). 

2. Simulate the ALU and test different combinations of DATA and ACCA. 



EE 231  Fall 2010 

 

3 

 

3. Program your ALU code into your CPLD. 

4. Create another program that will call your ALU module.  In this module read 

external inputs for ACCA and DATA as well as the ALU_CTR.  Output your results 

on two 7-segment displays (Pinout of the MAXII micro board is shown in Figure 

2). 

 

Figure 2.  I/O Map of Prototype Areas 

 

3. Supplementary Material 

3.1 Verilog 

3.1.1 Parameters 

 

Parameters are constants and not variables. 

parameter num = 8; 



EE 231  Fall 2010 

 

4 

 

 

3.1.2 Operators 

 

?:Construct 

assign y = sel?a:b; 

If sel is true, then y is assigned a, else it is assigned b. 

Concatenations In Verilog it is possible to concatenate bits using {·}. 

{a, b, c, a, b, c} 

is equivalent to 

{2{a, b, c}} 

Comparison Operators 

assign y = a>b?a:b; 

assign y to a if a > b and assign it to b otherwise. Table 2 shows a list of comparison 

operators. 

Table 2. Comparison Operators 

 

• For == and != the results is x, if either operand contains an x or z. 

Logical Operators Table 3 shows a list of logical operators. 

• Evaluation is performed left to right. 

• x if any of the operands has unknown x bits. 



EE 231  Fall 2010 

 

5 

 

Table 3. Logical Operators 

 

Binary Arithmetic Operators Table 4 shows a list of arithmetic operators. 

Table 4. Arithmetic Operators 

 

Unary Arithmetic Operators Table 5 shows a list of unary arithmetic operators. 

Table 5. Unary Arithmetic Operators 

 

Bitwise Operators Table 6 shows a list of bitwise operators. 

Table 6. Bitwise Operators 

 

Unary Reduction Operators Table 7 shows a list of unary reduction operators.  They 

produce a single bit result by applying the operator to all of the pits of the operand. 

Shift Operators Table 8 shows a list of shift operators. 

• Left operand is shifted by the number of bit positions given by the right operand. 



EE 231  Fall 2010 

 

6 

 

• Zeros are used to fill vacated bit positions. 

Table 7. Unary Arithmetic Operators 

 

Operator Precedence Rule Table 9 shows a list operator precedence rules. 

 

3.1.3  8-bit Adder 

Program 1 shows how to implement an 8-bit adder. 

 

Program 1  An Example of an 8-bit Adder. 

 

wire [7:0] sum, a, b; 

wire cin, cout; 

 

assign {cout,sum} = a+b+cin; 

 

 

Table 8. Shift Operators 

 

 

 

 



EE 231  Fall 2010 

 

7 

 

Table 9. Precedence Rules 

 


