
EE 231 Fall 2010

1

EE 231 Lab 9

Computer Control Unit

You are on the path do design your first computer. A conceptual block diagram of a simple

computer is shown in Figure 1. In previous labs you have already designed the DATA

MUX, the ALU, and required registers. In this lab you will design the computer control unit.

The control unit is a finite state machine. Its inputs are the instruction register and the

carry, as well as a clock pulse and RESET. The control unit’s outputs are the control

signals that direct the operation of the rest of the computer. The control unit can be in one

of four states: RESET, FETCH, EX1 and EX2:

• RESET is the reset state. The computer gets into this state when the RESET input

is low and stays in this state until the RESET input goes high.

• FETCH is the fetch cycle. The computer program is stored in memory. During the

fetch cycle the next instruction is fetched from memory and loaded into the

instruction register (INST).

• EX1 is the first execution cycle. Once an instruction has been loaded into INST,

the control unit determines the required course of action to take based on the value

of INST and the current state of the control unit.

• EX2 is the second execution cycle. Some instructions only require one execution

cycle (EX1) while others require two (EX1, and EX2).

EE 231 Fall 2010

2

Figure 1. Simple Computer

Table 1. Computer Instructions.

EE 231 Fall 2010

3

The outputs of the control unit are the control signals shown on the block diagram of the

computer. Except for ALU_CTRL and MEM_SEL, all of these signals are active low. In your

Verilog code you will activate the appropriate signals at the correct times to implement the

instruction the control unit is executing.

During the FETCH cycle the control unit will fetch the next instruction from memory to

determine what instruction it should execute. Thus, the FETCH cycle will be the same for

all instructions, it will read the instruction from memory, and latch it into the INST register.

To do this, IR_LOAD and PC_INC should be low, and MEM_SEL should be set to select the

address from the program counter PC. With the control lines set up like this the address to

the memory will be from the PC, i.e., the address of the next instruction to execute, and the

memory output enable line will be low (active). The memory will put the data at that

address on its output lines, which are the input lines to the INST register. On the next clock

edge, the data from memory will be latched into the INST register, and the PC will be

incremented to the next memory address. What the control unit does next will depend on

the data loaded into the INST register. Here is a sample code of how you may structure

your module.

EE 231 Fall 2010

4

Example 1

Consider the instruction LDAA addr where addr=0×F5. We will further assume that the

instruction is in memory address 0 × 80 and 0 × 81, and that the code for LDAA addr is 0 ×

01.

FETCH: During the fetch cycle the instruction register must be loaded with the instruction

op code, 0 × 01. To do this the Addr MUX Sel must select the PC as the address source,

memory address 0×80 must be read which causes its value to be placed on the DATA lines.

The value on the DATA lines must be latched into IR, and the PC must be incremented.

Thus during FETCH you should have PC_INC, INST_LOAD and Addr_Mux_Sel.

EX1: During EX1, you must read the memory address that the PC is pointing at. By

reading address 0×81 the value 0×F5 is placed on the DATA line. Then 0×F5 needs to be

stored in the MAR register. Finally, the program counter should be incremented. Thus

during EX1 you should have PC_INC and MAR_LOAD active, and Addr_Mux_SEL set to

PC. After these steps the situation should be as shown below

EX2: Now that MAR contains the value 0×F5, the multiplexer should select MAR as the

source of the address. This address should then be read which causes the memory contents

of address 0×F5 to be placed onto the DATA line. Then the ALU can load this value into

ACCA. During EX2 you should have ACCA_LOAD active, Addr_Mux_SEL set to MAR, and

EE 231 Fall 2010

5

ALU_CTL set to LOAD. When the control lines are set up like this, the value of 0×F5 will

be on the address lines of the memory unit, and the data lines out of the memory will

contain the data in address 0×F5. This data will be passed through the ALU to the input of

ACCA.

On the next clock cycle, the value will be latched into ACCA. Note that you do not want

PC_INC active because PC is already pointing to the next instruction to be executed.

Example 2

The next instruction in the program is LDAA #num where #num=0×F5. This instruction

translates as “load accumulator ACCA with the value F5”. Assume the op code for LDAA #

is 0×02. Before the program begins, the situation is as below:

FETCH: The fetch cycle is the same for this command as it was in Example 1. After the

fetch cycle the situation should be:

EX1: During the EX1 cycle the PC is pointing at memory address 0×83. By reading this

address, the value 0×F5 is placed on the DATA line. ACCA_LOAD and PC_INC, should be

active, MEM SEL should be set to select PC, and the ALU_CTRL lines should select the

function which loads ACCA. When the control lines are set up like this, the value 0×83 will

be on the address lines of the memory unit, and the data lines out of the memory unit will

contain the data in address 0×83 (which in this example is 0×F5. This data will be passed

through the ALU to the input of ACCA. On the next clock cycle the data will be latched into

ACCA. There is no EX2 cycle.

EE 231 Fall 2010

6

Example 3

The next instruction in the program is JMP addr where addr=0×F5. Assume the op code for

JMP addr is 0×12. Before the program begins, the situation is as below:

FETCH: The fetch cycle is the same for this command as it was in Example 1. After the

fetch cycle the situation should be:

EX1: During the EX1 cycle the PC is pointing at memory address 0×05. By reading this

address, the value 0×F5 is placed on the DATA line. ACCA_LOAD and PC_LOAD, should

be active, and MEM_SEL should be set to select PC. When the control lines are set up like

this, the value 0×85 will be on the address lines of the memory unit, and the data lines out

of the memory unit will contain the data in address 0×85 (which in this example is 0×F5).

This data will be on the input lines to PC. On the next clock cycle the data will be latched

into PC. There is no EX2 cycle.

1. Prelab

1. The output of the control unit depends on both the present state and the input. What

type of state machine is this?

2. Draw the state diagram for the control unit.

1 Lab

1. Assign op codes to each instruction in the instruction set.

2. Write a Verilog program to implement the control unit.

EE 231 Fall 2010

7

• To improve readability you should use PARAMETER to assign values that are

frequently used in your program, e.g., op codes.

• You should also provide default values for the control signals.

3. Simulate the control unit in Altera. What happens when RESET is low? Test with

different values for INST and check that the control unit cycles through the

appropriate states for that instruction and that the control signals are what you

expect. Test the JCS command both when the carry is set and when the carry is not

set.

