EE 231 Fall 2015

EE 231 Prelab 3

Adder/Subtractor

In this lab you will learn how to write several modules and instantiate them. To demonstrate this process you will design a 4-bit full adder/subtractor.

1. Prelab

- 1.1. Write the truth table for a full adder.
- 1.2. Write the truth table for a full subtractor.
- 1.3. Show how you can use half adders to build a full adder.
- 1.4. Figure 1 shows how to implement a ripple adder using a sequence of 1-bit full adders. Using an example, verify that this circuit functions as a 4-bit adder.

Figure 1: 4-bit Adder

- 1.5. What does the V signal, which may be computed as $V = C3 \oplus C4$, represent? In order to answer this question try to use examples when you are adding two positive numbers and another when you are adding two negative numbers.
- 1.6.By slightly modifying the circuit shown in Figure 1 we can design an adder/subtractor as shown in Figure 2. Why does this circuit make an adder when the sel = 0, and why does it behave as a subtractor when the sel = 1?
- 1.7.Fill in Table 1.

	sel	Input B	Output D in terms of B
Γ	0	$B_3B_2B_1B_0$	
	1	$B_3B_2B_1B_0$	

Table 1: Outputs of an adder/subtractor

1.8.Using Table 1, write a Verilog program to implement a decoder that selects the proper input to the full adder depending on the *sel* signal.

EE 231 Fall 2015

Figure 2: 4-bit Adder/Subtractor.