
EE 231 Fall 2015

EE 231 Prelab 8

Computer Control Unit
1. Introduction

You are on the path to design your first computer. A conceptual block diagram of a simple
computer is shown in Figure 1. In previous labs you have already designed the DATA MUX, the
ALU, and the required registers. In this lab you will design the computer control unit. The control
unit is a finite state machine. Its inputs are the instruction register, the carry, a clock pulse, and
RESET. The control unit’s outputs are control signals that direct the operation of the rest of the
computer. The control unit can be in one of four states: RESET, FETCH, EX1 and EX2:

• RESET is the reset state. The computer gets into this state when the RESET input is
low and stays in this state until the RESET input goes high.

• FETCH is the fetch cycle. The computer program is stored in memory. During the fetch
cycle the next instruction is fetched from memory and loaded into the instruction register
(INST).

• EX1 is the first execution cycle. Once an instruction has been loaded into INST, the
control unit determines the required course of action to take based on the value of INST
and the current state of the control unit.

• EX2 is the second execution cycle. Some instructions only require one execution cycle
(EX1) while others require two (EX1, and EX2).

1.Prelab

1.1.The output of the control unit depends on both the present state and the input. What type of
state machine is this?

1.2.Draw the state diagram for the control unit.

EE 231 Fall 2015

Figure 1: Simple Computer

EE 231 Fall 2015

Table 1: Computer Instructions

The outputs of the control unit are the control signals shown on the block diagram above. Except
for ALU_CTRL and MEM_SEL, all of these signals are active low. In your Verilog code you
will activate the appropriate signals at the correct times to implement the instruction the control
unit is executing.

During the FETCH cycle, the control unit will fetch the next instruction from memory to
determine what instruction it should execute. Thus, the FETCH cycle will be the same for all
instructions where it will read the instruction from memory and latch it into the INST register. To
do this, IR_LOAD and PC_INC should be low, and MEM_SEL should be set to select the
address from the program counter PC. With the control lines set up like this the address to the

EE 231 Fall 2015

memory will be from the PC which is the address of the next instruction to execute, and the
memory output enable line will be low (active). The memory will put the data at that address on
its output lines, which are the input lines to the INST register. On the next clock edge, the data
from memory will be latched into the INST register, and the PC will be incremented to the next
memory address. What the control unit does next will depend on the data loaded into the INST
register. Here are three sample codes of how you may structure your module.

Example 1

Consider the instruction LDAA addr where addr=0×F5. We will further assume that the
instruction is in memory address 0 × 80 and 0 × 81, and that the code for LDAA addr is 0 × 01.

FETCH: During the fetch cycle the instruction register must be loaded with the instruction op
code, 0 × 01. To do this the Addr MUX Sel must select the PC as the address source and the
memory address 0×80 must be read which causes its value to be placed on the DATA lines. The
value on the DATA lines must be latched into IR, and the PC must be incremented. Thus during
FETCH you should have PC_INC, INST_LOAD and Addr_Mux_Sel.

EX1: During EX1, you must read the memory address that the PC is pointing at. By reading
address 0×81 the value 0×F5 is placed on the DATA line. Then 0×F5 needs to be stored in the
MAR register. Finally, the program counter should be incremented. Thus during EX1 you should
have PC_INC and MAR_LOAD active, and Addr_Mux_SEL set to PC. After these steps the
situation should be as shown below

EE 231 Fall 2015

EX2: Now that MAR contains the value 0×F5, the multiplexer should select MAR as the source
of the address. This address should then be read which causes the memory contents of address
0×F5 to be placed onto the DATA line. Then the ALU can load this value into ACCA. During
EX2 you should have ACCA_LOAD active, Addr_Mux_SEL set to MAR, and ALU_CTL set
to LOAD. When the control lines are set up like this, the value of 0×F5 will be on the address
lines of the memory unit, and the data lines out of the memory will contain the data in address
0×F5. This data will be passed through the ALU to the input of ACCA.

On the next clock cycle, the value will be latched into ACCA. Note that you do not want
PC_INC active because PC is already pointing to the next instruction to be executed.

Example 2

The next instruction in the program is LDAA #num where #num=0×F5. This instruction
translates as “load accumulator ACCA with the value F5”. Assume the op code for LDAA # is
0×02. Before the program begins, the situation is as below:

FETCH: The fetch cycle is the same for this command as it was in Example 1. After the fetch
cycle the situation should be:

EX1: During the EX1 cycle the PC is pointing at memory address 0×83. By reading this
address, the value 0×F5 is placed on the DATA line. ACCA_LOAD and PC_INC, should be
active, MEM SEL should be set to select PC, and the ALU_CTRL lines should select the
function which loads ACCA. When the control lines are set up like this, the value 0×83 will be
on the address lines of the memory unit, and the data lines out of the memory unit will contain
the data in address 0×83 (which in this example is 0×F5. This data will be passed through the
ALU to the input of ACCA. On the next clock cycle the data will be latched into ACCA. There is
no EX2 cycle.

Example 3

EE 231 Fall 2015

The next instruction in the program is JMP addr where addr=0×F5. Assume the op code for JMP
addr is 0×12. Before the program begins, the situation is as below:

FETCH: The fetch cycle is the same for this command as it was in Example 1. After the fetch
cycle the situation should be:

EX1: During the EX1 cycle the PC is pointing at memory address 0×05. By reading this
address, the value 0×F5 is placed on the DATA line. ACCA_LOAD and PC_LOAD, should be
active, and MEM_SEL should be set to select PC. When the control lines are set up like this, the
value 0×85 will be on the address lines of the memory unit, and the data lines out of the memory
unit will contain the data in address 0×85 (which in this example is 0×F5). This data will be on
the input lines to PC. On the next clock cycle the data will be latched into PC. There is no EX2
cycle.

