
EE 231 Fall 2017

Lab 4: Arithmetic Logic Unit

The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part of the computer
which performs arithmetic operations on numbers, e.g. addition, subtraction, etc. In this lab you
will use Verilog to implement an ALU which has 10 functions. Use of the case structure will
make this easy.

Figure 1: Arithmetic Logic Unit

The ALU that you will build (see Figure 1) will perform 10 functions on 8-bit inputs as on Table
1. Please make sure you use the same variable name as the ones used in this lab. Do NOT make
your own. The ALU will generate an 8-bit result (Result), a one bit carry (C), and a one bit zero-
bit (Z). To select which of the 10 functions to implement you will use Alu_Ctrl as the selection
lines.

1 Prelab

1.1. Fill out Table 1 (Give unique values to each instruction.) How many bits should Alu_Ctrl
be?

1.2. Write code to implement the ALU.

2 Lab

2.1 Write a Verilog program based off of your code written in the Prelab to implement the ALU.

2.2 Design the ALU using Verilog. Make sure you deal with any unused bit combinations of
the Alu_Ctrl lines. (Hint: review default cases)

2.3 Simulate the ALU and test different combinations of DATA and ACCA. Test ALL of the
instructions.

1

EE 231 Fall 2017

2.4 Create another program that will call your ALU module. In this module, have ACCA and
DATA as external inputs as well as Alu_Ctrl. Output your results on two 7-segment displays.
(Pinouts are included in Figure 2).

2.5 Program your ALU code into your FPGA.

Table 1: Arithmetic Logic Unit Instructions

2

EE 231 Fall 2017

Figure 2: Pinout for GPIO-0 expansion area for the DE0-NANO

3 Supplement: Verilog (3)

3.1 Parameterization

3.1.1 Macros

Listing 1: Macros in Verilog

3.1.2 Parameters
Listing 2: Parameters in Verilog

Parameters are constants, not variables.

3.2 Operators

3.2.1 Ternary Operators

3

EE 231 Fall 2017

Listing 3: Ternary Operator in Verilog

If sel is true, y is assigned to a, otherwise it is assigned to b.

3.2.2 Concatenation

Listing 4: Concatenation in Verilog

Bits are concatenated using { }.

3.2.3 Comparison

Listing 5: Comparison in Verilog

Compare a to b, if true set y equal to a. Other comparisons are listed in Listing 6.

Listing 6: Comparison Operators

3.2.4 Logical Operators

Listing 7: Logical Operators

3.2.5 Binary Arithmetic Operators

Listing 8: Binary Arithmetic Operators

1

EE 231 Fall 2017

3.2.6 Unary Arithmetic Operators

Listing 9: Unary Arithmetic Operators

3.2.7 Bitwise Operators
Listing 10: Bitwise Operators

3.2.8 Unary Reduction Operators

Produce a single bit result by applying the operator to all the bits of the operand.

Listing 11: Unary Reduction Operators

3.2.9 Shift Operators

Left operand is shifted by the number of bit positions given by the right operand.

Zeros are used to fill vacated bit position.

Listing 12: Shift Operators

2

EE 231 Fall 2017

3.2.10 Precedence
Listing 13: Precedence

3

