EE 231 Fall 2017

Lab 4: Arithmetic Logic Unit
The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part of the computer
which performs arithmetic operations on numbers, e.g. addition, subtraction, etc. In this lab you

will use Verilog to implement an ALU which has 10 functions. Use of the case structure will
make this easy.

ACCA Data_ Out

|

Alu Ctrl — — — » ALU

T

Result

Figure 1: Arithmetic Logic Unit
The ALU that you will build (see Figure 1) will perform 10 functions on 8-bit inputs as on Table
1. Please make sure you use the same variable name as the ones used in this lab. Do NOT make
your own. The ALU will generate an 8-bit result (Result), a one bit carry (C), and a one bit zero-

bit (2). To select which of the 10 functions to implement you will use Alu_Ctrl as the selection
lines.

1 Prelab

1.1. Fill out Table 1 (Give unique values to each instruction.) How many bits should Alu_Ctrl
be?

1.2. Write code to implement the ALU.
2 Lab
2.1 Write a Verilog program based off of your code written in the Prelab to implement the ALU.

2.2 Design the ALU using Verilog. Make sure you deal with any unused bit combinations of
the Alu_Ctrl lines. (Hint: review default cases)

2.3 Simulate the ALU and test different combinations of DATA and ACCA. Test ALL of the
instructions.

EE 231

Fall 2017

2.4 Create another program that will call your ALU module. In this module, have ACCA and
DATA as external inputs as well as Alu_Ctrl. Output your results on two 7-segment displays.
(Pinouts are included in Figure 2).

2.5 Program your ALU code into your FPGA.

Table 1: Arithmetic Logic Unit Instructions

| Alu Ctrl] Instruction

| Operation (Mnemonic)

LDDA

Loads ACCA with the wvalue on the Data bus. Z changes to 1 if
Result == 0. (Load ACCA from Data)

ADDA

Adds the value on the Data bus to the value in ACCA and saves the
result in ACCA. C is the carry (out) from addition and Z is set if the
result 1s 0. (Add ACCA and Data)

SUBA

Subtracts the value on the Data bus from the value in ACCA and
saves the result in ACCA. C is the carry (in) from subtraction and Z
is set if the result is 0. (Subtract value in Data from ACCA)

ANDA

Perform a bitwise AND of the value on the Data bus with the value
in ACCA. Save the result in ACCA. C should be the logical AND of the
value on the Data bus with the value in ACCA. Z is set if the result
is (. (AND of ACCA and value on Data)

ORAA

Perform a bitwise OR of the value on the Data bus with the value
in ACCA. Save the result in ACCA. C should be the logical OR of the
value on the Data bus with the value in ACCA. Z is set 1f the result
is 0. (OR of ACCA and value on Data)

COMA

Replace the value in ACCA with its one's complement. C is set to 1
and Z is set if the result is 0. (Compliment ACCA)

INCA

Increment value in ACCA. Z is set if the result is 0. (INCA ACCA)

LSLA

Logical shift left of ACCA. C is set to the previous MSB of ACCA and
Z is set if the result is 0. (Logical shift left ACCA)

LSEA

Logical shift right of ACCA. C is set to the previous LSE of ACCA and
Z is set if the result is 0. (Logical shift right ACCA)

ASRA

Arithmetic shift right of ACCA. C is set to the previous LSB of ACCA
and Z is set if the result is 0. (Arithmetic shift right ACCA)

|] ZERD

| Zero the value of ACCA. Cls set to 0 and Z is set to 1. (Zero ACCA)

| | RST

| Reset ACCA to 0xFF. Cis set to 0 and Z is set to 0. (Reset ACCA)

EE 231 Fall 2017
GPIO_0_INO ® o GPIO_00
GPIO_0_IN1 = A GPIO_01
GPIO_02 . ' GPIO_03
GPIO_04 s & GPIO_05
GPIO_06 - GPIO_07
B = L
VeC_sYSs O—55i55s : : GPIO_09
GPIO_010 als GPIO_011
GPIO_012 ile GPIO_013
GPIO_014 5 GPIO_015
GPIO_016 s GPIO 017
GPIO 018 e GPIO_019
GPIO_020 = A GPIO_021
GPIO_022 s GPIO_023
VeC3P3 055502 : : | GPIO_025
GPIO_026 4 GPIO_027
GPIO_028 = GPIO_029
GPIO_030 s GPIO_031
GPIO_032 = GPIO_033
Figure 2: Pinout for GPIO-0 expansion area for the DEO-NANO
3 Supplement: Verilog (3)

3.1 Parameterization

3.1.1 Macros

Listing 1: Macros in Verilog

1 ‘define Rst_Addr 8’hFF // Gets Expaned
2 assign data = ‘Rst_fddr; // Tic is Necessary

3.1.2 Parameters

Listing 2: Parameters in Verilog

1 parameter num = 8;

Parameters are constants, not variables.

3.2 Operators

3.2.1 Ternary Operators

EE 231 Fall 2017

Listing 3: Ternary Operator in Verilog

1 &assigny =sel 7 a : b;

If sel is true, y is assigned to a, otherwise it is assigned to b.
3.2.2 Concatenation

Listing 4: Concatenation in Verilog

1 {a, b, c}

Bits are concatenated using { }.
3.2.3 Comparison

Listing 5: Comparison in Verilog

1 if(a > b) y = a;

Compare a to b, if true set y equal to a. Other comparisons are listed in Listing 6.

Listing 6: Comparison Operators

> // Greater than

Less than

// Greater than or equal to
Less than or equal to
Equality

Equality including X and Z
Inequality

Inequality including X and Z

Q0 =] O QT s QO ba e
Il ||.I'\ A
Il]
]
Ty T, e S
e S

o
]

e
e e

3.2.4 Logical Operators

Listing 7: Logical Operators

1 ! // Logical negation
2 Ek /{ Logical and
301 /{ Logical or

3.2.5 Binary Arithmetic Operators

Listing 8: Binary Arithmetic Operators

// Addition

// Subtraction
Multiplication

J/ Divizion (truncated)
Modulus

(LA
*
Py
—

i
-
—

EE 231

Fall 2017

3.2.6 Unary Arithmetic Operators

Listing 9: Unary Arithmetic Operators

1 B // Change the sign of the operand

3.2.7 Bitwise Operators

Listing 10: Bitwise Operators

- // Bitwise
& //{ Bitwise
I // Bitwise
- // Bitwise
e /I Bitwise

(= T

negation
AND

OR

XOR

XNDR

- // Bitwise XNOR (also)

3.2.8 Unary Reduction Operators

Produce a single bit result by applying the operator to all the bits of the operand.

Listing 11: Unary Reduction Operators

= // Bitwise megation
& // Bitwise AND

| // Bitwise OR

‘& /{ Reduction NAND

Reduction NOR

- // Bitwise XOR
- /{ Bitwise XNOR

G0 =1 U ke O b
¥
—
—

- // Bitwise

XNOR (also)

3.2.9 Shift Operators

Left operand is shifted by the number of bit positions given by the right operand.

Zeros are used to fill vacated bit position.

Listing 12: Shift Operators

1 =< // Lopgical left shift
2 > // Logical right shift

EE 231 Fall 2017

3.2.10 Precedence
Listing 13: Precedence

1 /#* Hiphest Precedence */

2 1, -

3 =, /, %

4 +, -

5 <<, >

6 <, <=, >, »=

7 &

g -,

9 |

10 &k

11 I

12 7

13 /* Lowest Precedence #*/

