Homework \#1 Due September 5, 2007
2.6 Use Venn diagram to prove that

$$
\left(x_{1}+x_{2}+x_{3}\right) \cdot\left(x_{1}+x_{2}+\overline{x_{3}}\right)=x_{1}+x_{2}
$$

2.8 Draw a timing diagram for the circuit in Fig. 2.19a. Show the waveforms that can be observed on all wires in the circuit.


Fig. 2.19(a) A minimal sum-of-products realization
2.11 Use algebraic manipulation to show that the three input variables $x_{1}, x_{2}$, and $x_{3}$

$$
\prod M(0,1,2,3,4,5,6)=x_{1} x_{2} x_{3}
$$

2.12 Use algebraic manipulation to find the minimum sum-of-products expression for the function $f=x_{1} x_{3}+x_{1} \overline{x_{2}}+\overline{x_{1}} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}$
2.21 Design the simplest sum-of-products circuit that implements the function $f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(1,3,4,6,7)$.
2.29 Design the simplest circuit that has 3 inputs, $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, which produces an output value of 1 whenever exactly one or two of the input variables have the value 1 ; otherwise, the output has to be 0 .
2.34 For the timing diagram in Fig. P2.4, synthesize the function $f\left(x_{1}, x_{2}, x_{3}\right)$ in the simplest POS form.


Fig. P2.4. A timing diagram representing a logic function.
2.38 Implement the function in Fig. 2.26 using only NOR gates.

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

Fig. 2.26. Truth table for a three-way light control.

