Homework \#3 Due October 3, 2007
5.1 Determine the decimal values of the following unsigned numbers:
(a) $(0111011110)_{2}$
(b) $(1011100111)_{2}$
(c) $(3751)_{8}$
(d) $(\mathrm{A} 25 \mathrm{~F})_{16}$
(e) $(\mathrm{F} 0 \mathrm{~F} 0)_{16}$
5.3 Determine the decimal values of the following 2's complement numbers:
(a) 0111011110
(b) 1011100111
(c) 1111111110
5.5 Perform the following operations involving eight-bit 2's complement numbers and indicate whether arithmetic overflow occurs. Check your answers by converting to decimal sign-and-magnitude representation.

00110110	01110101	11011111
+01000101	+11011110	+10111000
00110110	01110101	11011111
- 00101011	-11010110	-11101100

5.7 Show that the circuit in Fig. 5.5 implements the full-adder specified in Fig. 5.4a.
5.10 In section 5.5 .4 we stated that a carry-out signal, c_{k}, from bit position $\mathrm{k}-1$ of an adder circuit can be generated as $c_{k}=x_{k} \oplus y_{k} \oplus s_{k}$, where x_{k} and y_{k} are inputs and s_{k} is the sum bit. Verify the correctness of this statement.
5.14 In Fig. 5.18 we presented the structure of a hierarchical carry-lookahead adder. Show the complete circuit for a four-bit version of this adder, built using 2 two-bit blocks.
5.22 Suppose that we want to determine how many of the bits in a six-bit unsigned number are equal to 1 . Design the simplest circuit that can accomplish this task.
5.24 Show a graphical interpretation of three-digit decimal numbers, similar to Fig. 5.12. The left-most digit is 0 for positive numbers and 9 for negative numbers. Verify the validity of your answer by trying a few examples of addition and subtraction.
5.27 consider the subtractions $26-27=99$ and $18-34=84$. Using the concepts presented in section 5.3.4, explain how these answers (99 and 84) can be interpreted as the correct signed results of these subtractions.

