

EE 308 Fall 2011

EE 231 – Homework Chapter 6

6.1 Show how the function $f(w_1, w_2, w_3) = \sum m(0, 2, 3, 4, 5, 7)$ can be implemented using a 3-to-8 binary decoder and an OR gate.

6.6 For the function $f(w_1, w_2, w_3) = \sum m(0, 4, 6, 7)$ use Shannon's expansion to derive an implementation using a 2-to-1 multiplexer and any other necessary gates.

6.9 Prove Shannon's expansion theorem presented in section 6.1.2. Hint: use perfect induction, i.e. prove the theorem by showing that the expression for every possible value of x_i .

6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer-based logic block illustrated in Figure P6.1. Show how the function $f = w_2 \overline{w}_3 + w_1 w_3 + \overline{w}_2 w_3$ can be implemented using only one Act 1 logic block.

6.19 Write Verilog code that represents the function in problem 6.2, using a **case** statement.

6.22 Figure P6.3 shows a modified version of the code for a 2-to-4 decoder in Figure 6.42. This code is almost correct but contains one error. What is the error?

6.28 Write Verilog code that represents the circuit in Figure 6.19. Use the dec2to4 module in figure 6.35 as a subcircuit in your code.

6.32 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem 6.31 that realizes the logic functions:

$$d_3 = a_0 \oplus a_1, \ d_2 = \overline{a_0 \oplus a_1}, \ d_1 = a_0 a_1, \ d_0 = a_0 + a_1$$