Name

Partial credit will be given if you show your work.

1. (25 pts .) Given the following truth table, find the minimum-cost sum-of-products (SOP) expression for f.

Row \#	x_{1}	x_{2}	x_{3}	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

2. (25 pts.) Implement the multiplexer circuit using NAND gates. A multiplexer implements the following function: $f=\bar{s} x_{1}+s x_{2}$.
3. (25 pts.) Find the function f the following circuit implements.

4. (25 pts.) In a CMOS inverter assume that $k_{n}^{\prime}=20 \frac{\mu A}{V^{2}}, k_{p}^{\prime}=0.4 \times k_{n}^{\prime}, \frac{W_{n}}{L_{n}}=\frac{W_{p}}{L_{p}}=\frac{5.0 \mu m}{0.5 \mu m}, V_{D D}=5 \mathrm{~V}$. If the inverter drives a capacitance of 150 fF , find the longest propagation delay we can expect from this gate.
