Name \qquad
Partial credit will be given if you show your work.

1. (25 pts.) For the function $f\left(w_{1}, w_{2}, w_{3}\right)=\sum m(0,2,3,6)$, use Shannon's expansion to derive an implementation using a 2 -to- 1 multiplexer and any other necessary gates.
2. (25 pts.) An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch (as shown in its characteristic table). Show how an SR flip-flop can be constructed using a D flip-flop and other logic gates.

\mathbf{S}	\mathbf{R}	$\mathbf{Q}(\mathbf{t} \mathbf{1})$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	0

3. (25 pts.) The figure below shows the implementation of a three-bit counter with T Flip-Flops. What is the sequence that the circuit counts in (assume that $\mathrm{Q}_{0}=\mathrm{Q}_{1}=\mathrm{Q}_{2}=0$ at t_{0})?

4. (25 pts.) The following control circuit is used to control a three-register computer system through a multiplexed Bus. A partially completed timing diagram shows the contents of the registers before an operation is initiated. Complete the timing diagram, showing the contents of the Bus and registers (in Hexadecimal).

