

TEST 3

## Name

Partial credit will be given if you show your work.

1. (25 pts.) For the function  $f(w_1, w_2, w_3) = \sum m(0, 2, 3, 6)$ , use Shannon's expansion to derive an implementation using a 2-to-1 multiplexer and any other necessary gates.

2. (25 pts.) An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch (as shown in its characteristic table). Show how an SR flip-flop can be constructed using a D flip-flop and other logic gates.

| S | R | Q(t+1) |
|---|---|--------|
| 0 | 0 | Q(t)   |
| 0 | 1 | 0      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

3. (25 pts.) The figure below shows the implementation of a three-bit counter with T Flip-Flops. What is the sequence that the circuit counts in (assume that  $Q_0=Q_1=Q_2=0$  at  $t_0$ )?



4. (25 pts.) The following control circuit is used to control a three-register computer system through a multiplexed Bus. A partially completed timing diagram shows the contents of the registers before an operation is initiated. Complete the timing diagram, showing the contents of the Bus and registers (in Hexadecimal).

