
Copyright © 2013 Pearson Education, Inc.

CHAPTER 2

SIMPLE C PROGRAMS

Copyright © 2013 Pearson Education, Inc.

Program Structure

Let us analyze the structure of the simple C program in
Chapter 1

•The first lines of the program contain comments that
document its purpose:

•Comments begin with /* and end with */ characters. If
only one line will be used then may use //

Copyright © 2013 Pearson Education, Inc.

Program Structure

•Preprocessor directives provide instructions that are
performed before the program is compiled:

•These directives specify that statements in the files
stdio.h and math.h should be included in place of these
two statements

Copyright © 2013 Pearson Education, Inc.

Program Structure

•Every C program contains a set of statements called a
main function. The keyword int indicates that the
function returns an integer value. The keyword void
indicates that the function is not receiving any
information from the operating system:

Copyright © 2013 Pearson Education, Inc.

Program Structure

•The main function contains two types of commands:
1. Declarations
2. Statements

•Declarations define memory locations and may or may
not give initial values to be stored in memory

Copyright © 2013 Pearson Education, Inc.

Program Structure

•The main function contains two types of commands:
1. Declarations
2. Statements

•Statements specify the operations to be performed in the
program

Copyright © 2013 Pearson Education, Inc.

Program Structure

•To end execution of the program and return control to
the operating system, we use a return0; statement

•This statement return a value of 0 to the OS.

•The body of the main function then ends with the right
brace on a line by itself

Copyright © 2013 Pearson Education, Inc.

Constants and Variables

•Constants are specific values that we include in C
programs
•Variables are memory locations that are assigned a
name or identifier

•Valid variable names must:
•Begin with an alphabetic character
•Can contain letters but not as the first character
•Can be of any length, but the first 31 characters must
be unique

Copyright © 2013 Pearson Education, Inc.

Keywords

•C also includes keywords with special meaning to the C
compiler that cannot be used for identifiers

Copyright © 2013 Pearson Education, Inc.

Numeric Data Types

•Numeric data types are used to specify the types of
numbers that will be contained in variables

Copyright © 2013 Pearson Education, Inc.

Numeric Data Types

•The type specifiers for floating-point values are float
(single precision), double (double precision), and long
double (extended precision).

•The following statement in our sample program defines
seven variables that are double-precision floating-point
values:

Copyright © 2013 Pearson Education, Inc.

Example Data-Type Limits

•The difference between the float and double, and long
double types relate to the precision (accuracy) and range
of the values represented

Copyright © 2013 Pearson Education, Inc.

Character Data

•Character data is a type of information used to represent
and manipulate characters

Copyright © 2013 Pearson Education, Inc.

Symbolic Constants

•A symbolic constant is defined with a preprocessor
directive that assigns an identifier to the constant

•A directive can appear anywhere in a C program; the
compiler will replace each occurrence of the directive
identifier with the constant value. Examples of these
are:

#define PI 3.141516

•Statements that need to use the value of π then would
use the symbolic constant PI:

Area = PI*radius*radius

Copyright © 2013 Pearson Education, Inc.

Arithmetic Operators

•An assignment statement can be used to assign the
results of an arithmetic operator to a variable

Area_square = side*side

•Where * indicates multiplication. The symbols + and –
are used to indicate addition and subtraction,
respectively, and / is used for division

•The following are valid statements

Area_triangle = 0.5*base*height;
Area_triangle = (base*height)/2;

Copyright © 2013 Pearson Education, Inc.

Priority of Arithmetic Operators

•In an expression that contains more than one arithmetic
operator, we need to be concerned about the order in
which the operations are performed

•The following table shows the precedence of arithmetic
operators

Copyright © 2013 Pearson Education, Inc.

Overflow and Underflow

•If the results of a computation exceeds the range of
allowed values, an error occurs.

•For example, suppose we execute the following
statements;

x = 2.5e30;
y = 1.0e30;
z = x*y;

•The values of x and y are within allowable range, but not
z (which should be 2.5e60). This error is called exponent
overflow

Copyright © 2013 Pearson Education, Inc.

Increment and Decrement Operators

•The C language contains unary operators for
incrementing and decrementing variables.

•For example:
x --;
y ++;

•The first statement decrements the variable x by 1, and
the second statement increments the variable y by 1

•Other combinations are possible. For example x = x + 3
and x += 3 are equivalent statements

Copyright © 2013 Pearson Education, Inc.

Priority of Arithmetic and Assignment
Operators

Copyright © 2013 Pearson Education, Inc.

Standard Input and Output

•To use input/output statements in a C program, we must
include the following preprocessor directive:

include <stdio.h>

•The printf statement function allows us to print values
and text to the screen
•

printf(“Angle=%f radians \n”,angle);

•If the value of the angle is 2.84, the output generated by
the previous statement will be

Angle=2.840000 radians

Copyright © 2013 Pearson Education, Inc.

Specifiers for Output Statements

•To print a short or an int, use an %i (integer) or %d
(decimal)
•To print a float or a double, use an %f (floating-point), %e
(exponential), or %E.

Copyright © 2013 Pearson Education, Inc.

Standard Input and Output

•The scanf statement function allows us to enter values
in to the program

scanf(“%i”,&year);

•If we wish to read more than one value from the
keyboard, we can use the following statement

scanf(%lf %c”,&distance,&unit_length);

•To read a double variable use %lf specifier

•To read a character type variable, then use %c

Copyright © 2013 Pearson Education, Inc.

Specifiers for Input Statements

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Estimating Height from Bone Lengths

1.Problem Statement:
Estimate a person’s height from the length of the

femur and from that of the humerus

2.Input/Output Description:

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Estimating Height from Bone Lengths

3.Hand Example:
Suppose that the length o the femur is 15, and the

length of the humerus is 12 in. The height estimates are:

femur_height_female=femur_lengthx1.94+28.7=57.8 in

humerus_height_female=humerus_lengthx2.8+28.2=61.8
in

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Estimating Height from Bone Lengths

4. Algorithm Development:
Decomposition Outline
1. Read the lengths of the femur and humerus
2. Compute the height estimates
3. Print the height estimates

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Estimating Height from Bone Lengths

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Estimating Height from Bone Lengths

5.Testing
We test the program and generates the following

output

The answer matches the hand example

Copyright © 2013 Pearson Education, Inc.

Mathematical Functions

•Arithmetic expressions that solve engineering problems
often require computations other than additions,
subtraction, multiplication, and division

•The following preprocessor directive should be used in
program referencing mathematical functions

#include <math.h>

•The preprocessor should be used if for example one
wants to compute a sine function

Copyright © 2013 Pearson Education, Inc.

Mathematical Functions

•The following statement computes the sine of the angle
theta which is in radians

b=sin(theta);

•A function reference can also be a part of the argument
of another function reference (just like in MATLAB)

b=log(fabs(x));

•Where fabs(x) returns the absolute value of x, and log (x)
returns the natural logarithm of x

Copyright © 2013 Pearson Education, Inc.

Elementary Mathematical Functions

fabs(x) Absolute value of x
sqrt(x) Square root of x
pow(x,y) Computes the value of x to the y power
ceil(x) rounds x to the nearest integer toward
∞
floor(x) rounds x to the nearest integer toward
-∞
exp(x) computes the value of exp(x)
log(x) return natural log of x
log10(x) returns log 10 of x

Copyright © 2013 Pearson Education, Inc.

Trigonometric Functions

sin(x) sine of x in radians
cos(x) cosine of x in radians
tan(x) tangent of x in radians
asin(x) arcsine or inverse sine of x
acos(x) arcosine or inverse sine of x
atan(x) arctangent of x. The function returns an
angle in radians

in the range [-π/2,π/2]
atan2(x) arctangent of x. The function returns an
angle in radians

in the range [-π,π]

Copyright © 2013 Pearson Education, Inc.

Character Comparisons

•The standard C library contains additional functions for
use with characters

•The following preprocessor directive should be used in
programs referencing these character functions:

#include <ctype.h>

•Some character functions include:
isdigit(ch) returns a nonzero value if ch is a decimal
value
isalpha(ch) returns a nonzero value if ch ia an
upper/lowercase letter

.

.

.

Copyright © 2013 Pearson Education, Inc.

Homework on Chapter 2 is posted on the website:

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

Homework is due in a week

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

