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CHAPTER 2

SIMPLE C PROGRAMS
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Program Structure

Let us analyze the structure of the simple C program in 
Chapter 1

•The first lines of the program contain comments that 
document its purpose:

•Comments begin with /* and end with */ characters.  If 
only one line will be used then may use //
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Program Structure

•Preprocessor directives provide instructions that are 
performed before the program is compiled:

•These directives specify that statements in the files 
stdio.h and math.h should be included in place of these 
two statements
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Program Structure

•Every C program contains a set of statements called a 
main function.  The keyword int indicates that the 
function returns an integer value.  The keyword void 
indicates that the function is not receiving any 
information from the operating system:
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Program Structure

•The main function contains two types of commands:
1. Declarations
2. Statements

•Declarations define memory locations and may or may 
not give initial values to be stored in memory
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Program Structure

•The main function contains two types of commands:
1. Declarations
2. Statements

•Statements specify the operations to be performed in the 
program
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Program Structure

•To end execution of the program and return control to 
the operating system, we use a return0; statement

•This statement return a value of 0 to the OS.

•The body of the main function then ends with the right 
brace on a line by itself
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Constants and Variables

•Constants are specific values that we include in C 
programs
•Variables are memory locations that are assigned a 
name or identifier

•Valid variable names must:
•Begin with an alphabetic character
•Can contain letters but not as the first character
•Can be of any length, but the first 31 characters must 
be unique
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Keywords

•C also includes keywords with special meaning to the C 
compiler that cannot be used for identifiers
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Numeric Data Types

•Numeric data types are used to specify the types of 
numbers that will be contained in variables
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Numeric Data Types

•The type specifiers for floating-point values are float 
(single precision), double (double precision), and long 
double (extended precision).

•The following statement in our sample program defines 
seven variables that are double-precision floating-point 
values:
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Example Data-Type Limits

•The difference between the float and double, and long 
double types relate to the precision (accuracy) and range 
of the values represented
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Character Data

•Character data is a type of information used to represent 
and manipulate characters
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Symbolic Constants

•A symbolic constant is defined with a preprocessor 
directive that assigns an identifier to the constant

•A directive can appear anywhere in a C program; the 
compiler will replace each occurrence of the directive 
identifier with the constant value.   Examples of these 
are:

#define PI 3.141516

•Statements that need to use the value of π then would 
use the symbolic constant PI:

Area = PI*radius*radius
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Arithmetic Operators

•An assignment statement can be used to assign the 
results of an arithmetic operator to a variable

Area_square = side*side

•Where * indicates multiplication.  The symbols + and – 
are used to indicate addition and subtraction, 
respectively, and / is used for division

•The following are valid statements

Area_triangle = 0.5*base*height;
Area_triangle = (base*height)/2;
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Priority of Arithmetic Operators

•In an expression that contains more than one arithmetic 
operator, we need to be concerned about the order in 
which the operations are performed

•The following table shows the precedence of arithmetic 
operators
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Overflow and Underflow

•If the results of a computation exceeds the range of 
allowed values, an error occurs.

•For example, suppose we execute the following 
statements;

x = 2.5e30;
y = 1.0e30;
z = x*y;

•The values of x and y are within allowable range, but not 
z (which should be 2.5e60).  This error is called exponent 
overflow
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Increment and Decrement Operators

•The C language contains unary operators for 
incrementing and decrementing variables.

•For example:
x --;
y ++;

•The first statement decrements the variable x by 1, and 
the second statement increments the variable y by 1

•Other combinations are possible.  For example x = x + 3 
and x += 3 are equivalent statements
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Priority of Arithmetic and Assignment 
Operators
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Standard Input and Output

•To use input/output statements in a C program, we must 
include the following preprocessor directive:

# include <stdio.h>

•The printf statement function allows us to print values 
and text to the screen
•

printf(“Angle=%f radians \n”,angle);

•If the value of the angle is 2.84, the output generated by 
the previous statement will be

Angle=2.840000 radians
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Specifiers for Output Statements

•To print a short or an int, use an %i (integer) or %d 
(decimal)
•To print a float or a double, use an %f (floating-point), %e 
(exponential), or %E.
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Standard Input and Output

•The scanf statement function allows us to enter values 
in to the program

scanf(“%i”,&year);

•If we wish to read more than one value from the 
keyboard, we can use the following statement

scanf(%lf %c”,&distance,&unit_length);

•To read a double variable use %lf specifier

•To read a character type variable, then use %c
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Specifiers for Input Statements
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Problem Solving Applied:
Estimating Height from Bone Lengths

1.Problem Statement:
Estimate a person’s height from the length of the 

femur and from that of the humerus

2.Input/Output Description:
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Problem Solving Applied:
Estimating Height from Bone Lengths

3.Hand Example:
Suppose that the length o the femur is 15, and the 

length of the humerus is 12 in.  The height estimates are:

femur_height_female=femur_lengthx1.94+28.7=57.8 in

humerus_height_female=humerus_lengthx2.8+28.2=61.8 
in
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Problem Solving Applied:
Estimating Height from Bone Lengths

4. Algorithm Development:
Decomposition Outline
1. Read the lengths of the femur and humerus
2. Compute the height estimates
3. Print the height estimates
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Problem Solving Applied:
Estimating Height from Bone Lengths
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Problem Solving Applied:
Estimating Height from Bone Lengths

5.Testing
We test the program and generates the following 

output

The answer matches the hand example
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Mathematical Functions

•Arithmetic expressions that solve engineering problems 
often require computations other than additions, 
subtraction, multiplication, and division

•The following preprocessor directive should be used in 
program referencing mathematical functions

#include <math.h>

•The preprocessor should be used if for example one 
wants to compute a sine function
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Mathematical Functions

•The following statement computes the sine of the angle 
theta which is in radians

b=sin(theta);

•A function reference can also be a part of the argument 
of another function reference (just like in MATLAB)

b=log(fabs(x));

•Where fabs(x) returns the absolute value of x, and log (x) 
returns the natural logarithm of x
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Elementary Mathematical Functions

fabs(x) Absolute value of x
sqrt(x) Square root of x
pow(x,y) Computes the value of x to the y power
ceil(x) rounds x to the nearest integer toward 
∞
floor(x) rounds x to the nearest integer toward 
-∞
exp(x) computes the value of exp(x)
log(x) return natural log of x
log10(x) returns log 10 of x
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Trigonometric Functions

sin(x) sine of x in radians
cos(x) cosine of x in radians
tan(x) tangent of x in radians
asin(x) arcsine or inverse sine of x
acos(x) arcosine or inverse sine of x
atan(x) arctangent of x.  The function returns an 
angle in radians

in the range [-π/2,π/2]
atan2(x) arctangent of x.  The function returns an 
angle in radians

in the range [-π,π]
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Character Comparisons

•The standard C library contains additional functions for 
use with characters

•The following preprocessor directive should be used in 
programs referencing these character functions:

#include <ctype.h>

•Some character functions include:
isdigit(ch) returns a nonzero value if ch is a decimal 
value
isalpha(ch) returns a nonzero value if ch ia an 
upper/lowercase letter

.

.

.
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Homework on Chapter 2 is posted on the website:

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

Homework is due in a week

http://www.ee.nmt.edu/~erives/289_F12/EE289.html
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