
CHAPTER 4

MODULAR PROGRAMMING WITH FUNCTIONS

Copyright © 2013 Pearson Education, Inc.

MODULAR PROGRAMMING WITH FUNCTIONS

Modularity

•A program may also contain other functions, and it may refer to

functions in another file or in a library. These functions, or modules, are

sets of statements that perform an operation or compute a value

•To maintain simplicity and readability in long and complex programs,

we use a short main, and other functions instead of using one long main

Copyright © 2013 Pearson Education, Inc.

we use a short main, and other functions instead of using one long main

function.

•By separating a solution into a group of modules, each module is easier

to understand, thus adhering to the basic guidelines of structured

programming

Modularity

•Braking a problem into a set of modules has many advantages:

1. Every module can be written and tested separately from the rest of

the program

2. A module is smaller than a complete program, so testing is easier

3. Once a module has been tested, it can be used in new program

without having to retest it (reusability)

Copyright © 2013 Pearson Education, Inc.

without having to retest it (reusability)

4. Use of modules (modularity) usually reduces the overall length of

programs

5. Several programmers can work on the same project if it is separated

into modules

Modularity

Main

Modules

Copyright © 2013 Pearson Education, Inc.

Modules

Function Definition

•A function consists of a definition statement followed by declarations

and statements. The general form of a function is:

return_type function_name(parameter_declarations) {

declarations;

statements;

Copyright © 2013 Pearson Education, Inc.

statements;

return expression;

}

•The parameter declarations represent the information passed to the

function

•Additional variables used by the function are defined in declarations

statement

•All functions should include a return statement

Storage Class and Scope

•The variables can be declared within the main function or user-defined

functions are called local variables

•Variables that are declared outside the main program or user-defined

functions are called global variables

Copyright © 2013 Pearson Education, Inc.

• A local variable has a value when the function is being executed, but its

value is not retained when the function is completed

•A global variable can be accessed by any function within the program

Problem Solving Applied:

Computing the Boundaries of the Iris

•Most iris recognition techniques start with a segmentation operation

that identifies the iris/pupil boundary and boundary between iris and

sclera (the white of the eye)

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:

Computing the Boundaries of the Iris

•Segmentation is a very complex process to carry out automatically with

a computer algorithm. To simplify the process we will have a user click

on three points on the pupil boundary and three points on the

boundary between the iris and the sclera.

Copyright © 2013 Pearson Education, Inc.

•With three points the computer can compute the equation of a circle,

therefore we can compute the equation of the circle through these

points, and the location of the center of the circle

Problem Solving Applied:

Computing the Boundaries of the Iris

•The technique we will use to find the equation of a circle is based on

finding the equation of a line though points P1 and P2, and the equation

of the line though points P2 and P3

•The lines perpendicular to the two line segments (P1P2 and P2P3)

Copyright © 2013 Pearson Education, Inc.

•The lines perpendicular to the two line segments (P1P2 and P2P3)

intersect in the center of the circle

Problem Solving Applied:

Computing the Boundaries of the Iris

•Here are the equations needed for this program

•Slope of line P1P2

m12 = (y2-y1)/(x2-x1)

Copyright © 2013 Pearson Education, Inc.

•Slope of line P2P3

m23 = (y3-y2)/(x3-x2)

•Equation of line P1P2

y12 = m12(x-x1)+y1

Problem Solving Applied:

Computing the Boundaries of the Iris

•Equation of line P2P3

y23 = m23(x-x2)+y2

•Equation of line perpendicular to line P1P2 that bisects the line

segment

Copyright © 2013 Pearson Education, Inc.

segment

yp12 = (-1/m12)(x-(x1+x2)/2)+((y1+y2)/2)

•Equation of line perpendicular to line P2P3 that bisects the line

segment

yp23 = (-1/m23)(x-(x2+x3)/2)+((y2+y3)/2)

Problem Solving Applied:

Computing the Boundaries of the Iris

•Equation for x coordinate of the center of circle

xc = (m12m23(y1-y3)+m23(x1+x2)-m12(x2-x3)/(2(m23-m12))

•Equation for y coordinate of the center of circle

yc = (-1/m12)(xc-(x1+x2)/2)+(y1+y2)/2

Copyright © 2013 Pearson Education, Inc.

yc = (-1/m12)(xc-(x1+x2)/2)+(y1+y2)/2

•Equation for radius of the circle

r= sqrt((x1-xc)^2+(y1-yc)^2)

Problem Solving Applied:

Computing the Boundaries of the Iris

1. Problem Statement:

Given three points in a plane, determine the coordinates of the

center of the circle and the radius of the circle that contains the

three points

Copyright © 2013 Pearson Education, Inc.

2. Input/Output Description:

Problem Solving Applied:

Computing the Boundaries of the Iris

3. Hand example:

Using the equations provided earlier in this section, we now

compute the center of the corresponding circle and its radius.

Assume we start with three points:

Copyright © 2013 Pearson Education, Inc.

P1 = (-1,-1), P2 = (1,1,), P3 = (3,-1)

The slopes for lines P1P2 and P2P3 are:

m12 = 2/2 = 1, m23 = -2/2 = -1

Problem Solving Applied:

Computing the Boundaries of the Iris

3. Hand example:

The equations for the line P1P2 and P2P3 are:

y12 = x, y23 = -x + 2

Copyright © 2013 Pearson Education, Inc.

We can now compute the equations for the perpendicular lines

through P1P2 and P2P3 that bisect the line segments:

yp12 = -x, yp23 = x – 2

The coordinates of the center point are:

xc = 1, yc = -1

Problem Solving Applied:

Computing the Boundaries of the Iris

3. Hand example:

The radius of the circle is:

r = 2

Copyright © 2013 Pearson Education, Inc.

The equation for the circle is:

(x – 1)^2 + (y + 1)^2 = 4

Problem Solving Applied:

Computing the Boundaries of the Iris

4. Algorithm Development:

Because there are several equations to evaluate to compute the

coordinates of the center of the circle, this is a good candidate for

using different function(s)

Copyright © 2013 Pearson Education, Inc.

Decomposition Outline of the main program

1. Read the coordinates of the three points

2. Determine the x and y coordinate of the center of the circle

3. Compute the radius of the circle

4. Print the coordinates of the center of the circle and radius

Problem Solving Applied:

Computing the Boundaries of the Iris

4. Algorithm Development:

Decomposition Outline of a function

1. Compute the equations for the lines connecting the points

2. Compute the equations for the lines perpendicular to the lines

Copyright © 2013 Pearson Education, Inc.

2. Compute the equations for the lines perpendicular to the lines

connecting the three points

3. Compute the x coordinate of the center of the circle (the y

coordinate will be computed in the main)

Problem Solving Applied:

Computing the Boundaries of the Iris

• The main program looks like this:

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:

Computing the Boundaries of the Iris

• The function looks like this:

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:

Computing the Boundaries of the Iris

5. Testing

We test the program with the data from the hand example:

Copyright © 2013 Pearson Education, Inc.

The answer matches the hand example

Macros

•Before compiling a program, the preprocessor performs any actions

specified by preprocesing directives, such as inclusions of header files

•A simple operation can also be specified by a preprocessing directive

called a macro

Copyright © 2013 Pearson Education, Inc.

#define macro_name(parameters) macro_text

The macro_text replaces references to the macro_name in the program.

•The macro can represent a simple function.

Macros

•Consider the following simple program:

#include <stdio.h>

#define degrees_C(x) (((x)-32)*(5.0/9.0))

int main(void) {

Copyright © 2013 Pearson Education, Inc.

int main(void) {

/* Declare variables */ …

/* Get temperature in Fahrenheit */ …

/* Convert and print temp in Centigrade */

printf(“%f Centigrade \n”,degrees_C(temp));

/* Exit program */ …

}

Recursion

•A function that invokes itself (or calls itself) is a recursion function.

Recursion can be a powerful tool for solving certain classes of problems.

•A simple example of recursion can be shown using the factorial

computation. Recall that factorial is defined as

Copyright © 2013 Pearson Education, Inc.

k! = (k)(k-1)(k-2)…(3)(2)(1)

Where K is a nonegative integer, and where 0! = 1

•So 5! = 5*4*3*2*1 = 120 or

5! = 5*4! And 4! = 4*3! And 3! = 3*2! And 2! = 2*1! And 1! = 1*0!

and finally 0! = 1

Recursion

•Consider the following simple program used to compute the factorial of

a number recursively

Copyright © 2013 Pearson Education, Inc.

Recursion

•The output of the program is shown below for the hand example of 5!

Copyright © 2013 Pearson Education, Inc.

