CHAPTER 5

ARRAYS AND MATRICES

Copyright © 2013 Pearson Education, Inc.

One-Dimensional Arrays

*When solving engineering problems the data consist of just a single
number, and some other times we have hundreds of numbers that need
to be identified individually

*So we need a method to work with a large group of values using a
single identifier. The solution to this problem is to use a data structure
called an array.

*One-dimensional arrays can be visualized as a list of values arranged in
a row or column form:

o 0 -1 0.0 t[O!
s[0] s[1] s[2] 0.1 t[1]
0.2 t[2]

Copyright © 2013 Pearson Education, Inc.

Definition and Initialization
*An array is defined using declaration statements

*The declaration statements for the previous arrays are:

int s[3];
double t[3];

*Arrays can be initialized with declaration statements or with program
statements:

int s[3]={5,0,-1} or int s[]={5,0,-1}
double t[3]={0.0,0.1,0.2} double t[]={0.0,0.1,0.2}

Copyright © 2013 Pearson Education, Inc.

Definition and Initialization

*Arrays are often used to store information that is read form data files.
For example suppose that we have a data file named that contains 10
time and motions measurements collected from a seismometer:

*To read these values we could use the following statements:

int k;
double time[10], motion[10];

sensor = fopen(“sensor3.txt”,’r”);

for(k=0; k<=9; k++)
fscanf(sensor,”%lIf %If” &time[k],&motion[k]);

Copyright © 2013 Pearson Education, Inc.

Computation and Output

*To print 100 values of the array, one per line, we could use the
following statements:

e#tdefine N 100

printf(“y values: \n”);
for(k=0; k<=N-1; k++)
printf(“%f \n”,y[k]);

Copyright © 2013 Pearson Education, Inc.

Crime Scene Investigation

*The goal of the text is to teach the student how to solve problems using
the C language. To make the problems more interesting, the author is
using a them of Crime Scene Investigacion, or CSI. Biometrics can be
used to identify a person (either a victim, a suspect, or a witness).

sCommon biometrics are:

1. Fingerprint
2. Face

3. lris

4. Speech

Copyright © 2013 Pearson Education, Inc.

Crime Scene Investigation

Fingerprints

Fingerprints are the oldest method of identification. A common
method used by the FBI is based on the Henry classification system:
identifying whorl, arch or loops.

Copyright © 2013 Pearson Education, Inc.

Crime Scene Investigation

Face
Face recognition is another commonly used technique to identify an

individual form an image or from a single frame (or image) taken
from a surveillance video

Seanning flor snspect ou

Copyright © 2013 Pearson Education, Inc.

Crime Scene Investigation

Iris

Iris recognition is one the most accurate biometrics. Commercial iris
recognition systems use an infrared camera to collect an image of
the eye because an infrared image is not affected by color

Copyright © 2013 Pearson Education, Inc.

Crime Scene Investigation

4. Speech
Speech is also a biometric. Your speech is affected by your vocal
cords, your mouth, your tongue, your teeth, your nasal cavity, and
other parts of your anatomy. Therefore, it can also be used to
identify a person.

Copyright © 2013 Pearson Education, Inc.

Statistical Measurements

*Analyzing data collected from engineering experiments is an important
part of evaluating the experiments. Many of the computations or
measurements using data are statistical measurements.

Simple Analysis

When evaluating a set of experimental data, we often compute the
following statistical values:

Maximum

Minimum

Mean or average

Median

Variance and standard deviation

Pl g B9 =

Copyright © 2013 Pearson Education, Inc.

Statistical Measurements

*Maximum and Minimum. Are the maximum and minimum values in an
array

Mean. Is an average value in an array:

{ N

= ;

Median. The median is the value in the middle of a group of values,
assuming that the values are sorted

*\Variance and Standard Deviation. The variance is defined as the
average squared deviation from the mean

52 1 & 2
0" =5 2o (@ = n)

i=1

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Speech Signal Analysis

*Suppose we are interested in analyzing speech signals for the words
“zero”, “one”, “two”, ...,’nine.” We need to develop ways of identifying
the correct digit from a data file containing utterance of an unknown

digit

*The analysis of this type of complicated signal starts with computing
some statistical measurements. Other measurements used in speech
recognition are:

*Average magnitude

N
Ek=1|3"fk|

Average magnitude = N
i

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Speech Signal Analysis

*Average power:

E:f:j_:!"-'-2

Average magnitude = "
i

e Zero crossings: The number of zero crossings is the number of times
that the speech signal makes a transition from a negative to a
positive value or from a positive to a negative value.

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Speech Signal Analysis

*Following figure contains a plot of an utterance of the digit “zero”

0.3

g o
[]m"|”||“|| ”]’ m (1 '1“|'“'lm‘ FH)HJ[I‘Hl.‘ I)W\IH {h‘(|||}| bhrfﬁ,ffj',,l'
f'__‘_'_‘_‘_‘f_“_*j‘“_/_“'L"ﬁ'dhl'[I nm""'““” il Wu i *Pf[IR

Figure 5.2 Utterance of the word “zero.”

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Speech Signal Analysis

*Average power

E:f:j_:!"-'-2

N

Average magnitude =

1. Problem Description
Compute several statistical measurements for speech utterance.

2. Input/Output Description

— Mecan

— Standard deviation
—— Variance

™ Average power
—* Average magnitude

——* Jero crossings

Zerol. txt

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Speech Signal Analysis

3. Hand Example
Assume that the file contains the following values:

25 8.2 -1.1 -0.2 15

Using the equation described above, we can compute the following
values:

Mean = 2.18, Variance = 13.307, Standard deviation = 3.648
Average power = 15.398, Average magnitude = 2.7
Number of zero crossings = 2

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Speech Signal Analysis

4. Algorithm Development

Decomposition Outline
1. Read the speech signal into an array
2. Compute and print statistical measurements

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

#include <stdio.h>

#include <math.h:

#define MAX 2580

#define FILENAME “zerol.txt™

int main(weoid)

1
/* Declare and initialize wariables. */
int k=8, N;
double speech[Max];
FILE *filein;
double max(double x[], int N};
double min(double =[], int N};
double mean{double x[], int N);
double median(double x[], int N);
double wvariance(double =[], int N};
double std_dew(double %x[], int N};
double avg power({double x[], int N};
double avg magn(docuble =[], int N};
int crossings(double =[], int N};

/* Read information from data file *
filein = fopen(FILENAME,"r™);
if (filein == NULL) printf("Error opening file. “n");
else
1
while ((fscanf(filein,"¥1f",&speech[k])}) == 1) k++;
N = k;

/* Compute and print statistics %/
printf("Speech statistics “n");

printf (" Mean : Zf\n™, mean(speech,N));
printf (" Std. dewv.: %f'\n", std_dev(speech,N});
printf(" Variance : %f\n“, wvariance(speech,N});
printf (" Avg. pwr.: Ef\n", avg_power(speech,N));
printf (" Avg. mgn.: Ef\n“, avg_magn(speech,N});
printf(" Cressings: #d\n™, crossings(speech,N));

¥

/* Close data file and exit */

fclose(filein);

getch();

return 8;

1

/* This function returns the maximum
/* walue in the array x with n elements.

double max(double =[], int n)

1
/* Declare wvariables. */
int k;
double max_x;
/* Determine maximum value in the array. */
max_x = x[@];
for (k=1; k<=n-1; k++)
1

if (x[k] > max_x) max_x = x[k];

¥
/* Return maximum value. */
return max_x;

¥

JF o .

/* This functieon returns the average or
/* mean value in an array with n elements.

double mean{double x[], int n)

1
/* Declare and initialize variables. */
int k;
double sum=8;
/* Determine mean values. */
for (k=8; k<=n-1; k++)
{
sum += x[k];
b
/* Return mean value. */
return sum/n;
1

Copyright © 2013 Pearson Education, Inc.

/* This functicn returns the minimum
/* walue in an array x with n elements.

|double min{double x[], int n)

1
f* Declare variables. */
int k;
double min_x;
/* Determine minimum value in the array.
min_x = x[@];
for (k=1; k<=n-1; k++)
1

if (x[k] < min_x) min_x = x[k];

}
f* Return minimum value. */
return min_x;

1

JF o .

/* This function returns the median
/* walue in an array x with n elements.

double median(double x[], int n)
1
/* Declare wvariables., */
int k;
double median_x;

/* Determine median wvalue. */
k = floor(n/2);
if (n¥2 != @)
median_x = x[k];
else
median_x

(x[k-1] + x[k])}/2;

/* Return median value. */
return median_x;

*f

ll,-'* ___ *II,-'
f/* This function returns the variance *f
/* of an array with n elements. *f

double variance(double x[], int n)

1

/* Declare variables and function prototypes. */

int k3

double sum=8, mu;

double mean({double x[], int n);

/* Determine variance. */

mu = mean{x,n);

for (k=8; kd=n-1; k++)

1

sum += (x[k] - mu)*(x[k] - mu);

¥

/* Return variance. */

return sum/(n-1};
1
ll.-'* ___ *ll,-'
f* This function returns the average magnitude */
f* of an array with n elements. */

double avg magn(double %[], int n)

1
/* Declare variables and function prototypes. */
int k;
double sum=8;
/* Determine ave magnitude */
for (k=8; k<=n-1; k++) sum += fabs(x[k]);
/* Return average magnitude. */
return sum/n;
¥

Copyright © 2013 Pearson Education, Inc.

/* This function returns the standard deviation
/* of an array with n elements.

double std dev({double x[], int n)

1
/* Declare function prototypes. */
double variance(double %[], int n);
/* Return standard deviation. */
return sqrt{variance(x,n));
b
JF .

/* This function returns the average power
/* of an array with n elements.

double avg power(double x[], int n)

1
/* Declare variables and function prototypes. */
int k;
double sum=8;
/* Determine ave power */
for (k=8; k<=n-1; k++) sum += x[k]*x[k];
/* Return average power. */
return sum/n;
¥
FF o

=/
=/

=/
=/
=/

/* This function returns the crossings
/* of an array with n elements.

int crossings(double x[], int n)

1
/* Declare wvariables and function prototypes.
int k, cnt=8;
/* Determine the zero crossings ¥/
for (k=8; k<=n-2; k++)
if (x[k]*x[k+1] < @) cnt++;
/* Return zero crossings ¥/
return cnt;
¥
JF ol

Copyright © 2013 Pearson Education, Inc.

*/

Problem Solving Applied:
Speech Signal Analysis

Testing
The following values were computed for the utterance “zero” using
the file zerol.txt

BN Ch\Windows\system32\cmd .exe | =0 |-£§'-J

Speech s=tatistics -
Mean : —H.888208
Std. dew.: B.B77835
Uariance - @.8805934
Avg. pur.: A.AA5232
Avg. mgn.: B.B6E5%6Y
Crossings: 124

Copyright © 2013 Pearson Education, Inc.

Two-Dimensional Arrays

A set of data values that is visualized as a row or column is easily
represented by a one-dimensional array. An array with four rows and
three column (let us call it x) is shown in the following diagram

Row O 2 3 -1

0 3 5

2 6 3

Rows3 10 4
Column 0 .. Column 2

Copyright © 2013 Pearson Education, Inc.

Definition and Initialization

*To define a two-dimensional array, we specify the number of rows and
columns in the declaration statement. The row number is written first.
Both the row and column number are in brackets:

int x[4][3];

*A two-dimensional array can be initialized with a declaration
statement:

int x[4][3]={{2,3,-1},10,-3,5},{2,6,3},{-2,10,4}};

int x[][3]={{2,3,-1},{0,-3,5},{2,6,3},{-2,10,4}};

Copyright © 2013 Pearson Education, Inc.

Definition and Initialization

*Arrays can also be initialized with program statements (using nested
loops)

*For example to initialize an array such that each row contains the row
number, use the following statements:

/* Declare variables */
inti, j, t[5][4];

/* Initialize array */
for (i=0; i<=4; i++)
for (j=0; j<=3; j++) tlillj] =1

Copyright © 2013 Pearson Education, Inc.

Function Arguments

*When using a two-dimensional array as a function argument, the
function also needs information about the size of the array. Suppose
we need to write a program that computes the sum of the elements of
an array. We would need to use the following statements:

/* Declare variables */

int a[4][4];
int sum(int x[4][4]);

/* Use function to compute the array sum. */
Printf(“Array sum = %i \n”,sum(a));

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

*Terrain navigation is a key component in the design of unmanned aerial
vehicles (UAVs). Vehicles such as a robot or a car, can travel on land; and
a drone or plane, can fly above the land.

*A UAV contains an onboard computer that has stored terrain

information for the area in which is to be operated. The computer has
elevation information that allows for a safe navigation of the UAV

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

Real-time path planning

MQM-107 UAV

__.-—-——’\ 20
Bk—’_’_— — T___/—/_H (a8

e ..¢._ir'.bie f

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

1. Problem Statement
For this problem we want to determine whether the value in grid
position [m][n] is a peak.

Determine and print the number of peaks and their locations in an
elevation grid

2. Input/Output Description

—_— —— Peak locations

gridl. txt

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

3. Hand Example
Assume that the following data represent the elevation for a grid
that has six points along the side and seven points along the top (the
peaks are underlined)

5039 5127 5238 5259 5248 5310 5299
5150 5392 5410 5401 5320 5820 5321
5290 5560 5490 5421 5530 5831 5210
5110 5429 5430 5411 5459 5630 531y
4920 5129 4921 5821 4722 4921 5129
5023 5129 4822 4872 4794 4862 4245

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

1. Problem Statement
For this problem we want to determine whether the value in grid
position [m][n] is a peak.

Determine and print the number of peaks and their locations in an
elevation grid

2. Input/Output Description

—_— —— Peak locations

gridl. txt

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

4. Algorithm Development
Decomposition Outline

1. Dread the terrain data into an array
2. Determine and print the location of the peaks

Copyright © 2013 Pearson Education, Inc.

#include «<stdio.h>
#define N 25
#define FILEMAME “gridl.t=t"

int main{woid)

1
/* Declare and initialize variables. */
int nr, nc, 1, j;
double elevation[N][N];
FILE *grid;
/* Read informaticon from data file */
grid = fopen(FILENAME,"r");
if (grid == NULL) printf({"Error opening the file “n");
else
1
fscanf(grid,"%d %d",&nr,&nc);
for({i=@; i<=nr-1; i++)
for(j=8; j<=nc-1; j++)
fscanf(grid,"%1f" ,&elevation[i][j]);
/* Determine and print peak locations. */
printf{"Top left point define as row @, column @ “n"});
for (i=1; i<=nr-2; i++)
for (j=1; j<=nc-2; j++)
if({elevation[i-1][j]<elevation[1i][]j]) &&
(elevation[i+1][j]<elevation[i][j]) &&
(elevation[i][j-1]<elevation[i][j]) &&
(elevation[i][j+1]<elevation[i][j]))
printf("Peak at row: ¥d column: %d ‘\n",i,3);
/* Close file */
fclose(grid);
¥
/* Exit program ¥/
getch();
return @;
¥

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Terrain Navigation

Testing
The following output was printed using a data file that corresponds
to the hand example:

i | "ChUszers\enves\Documents WOWP Chapter:

Top left point define as row B, column @
Peak at row: 2 column: 1
Peak at row: 2 column: 5
Peak at row: 4 column: 3

Copyright © 2013 Pearson Education, Inc.

Homework on Chapter 5 is posted on the website:

http://www.ee.nmt.edu/~erives/289 F12/EE289.html

Homework is due within a week

Copyright © 2013 Pearson Education, Inc.

