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11.1 Plotting in General

• Plotting is perhaps the most powerful aspect of 
MATLAB.  Plots can be two-or three-dimensional with 
a wide variety of appearance to the plots

• All plots are hosted in a separate window, a figure
• A number of capabilities can be used with any plot:

– Configuring the axes
– Setting a color map
– Turning on a grid
– Title, axis labels and legends
– Text annotations
– Multiple plots on one figure
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11.1 Plotting in General

• axis([xl xu yl yu]) overrides the automatic computation of the 
axis values.

• colormap <specification> establishes a sequence of colors.  
The legal specification values are listed in Appendix A.  
Examples of these are autumn, bone, cool, etc.

• grid on puts a grid on the plot.

• hold on hold the existing data on the figure to allow 
subsequent plotting call to be added to the current figure 
without erasing the existing plot; hold off redraws the current 
figure erasing the previous contents.

• legend(...) creates a legend box
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11.1.2 Simple Functions for 
Enhancing Plots

• text(x, y,  {z}, <message>) places the text provided at the 
specified location on a 2-D plot, or at the (x,y,z) location on a 
3-D plot.

• title( ...) places the text provided as the title of the current plot

• view(az, el) sets the angle form which to view the plot.

• xlabel(...) sets the string provided as the label for the x-axis.

• ylabel(...) sets the string provided as the label for the y-axis.

• zlabel(...) sets the string provided as the label for the z-axis.
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11.1.3 Multiple Plots on One 
Figure

• Within the current figure, you can place 
multiple plots with the subplot command.

• The function subplot(r,c,n) divides the current figure 
into r rows and c column of equally spaced areas 
and then establishes the nth of these as the current 
figure:

...

subplot(3,2,1); % divides plotting are in 3x2 areas.

plot(x,sin(x));   % plots x vs. sin(x) in 1st. Window

...
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11.2 2-D Plotting

• The basic function to use for 2-D plots is plot(...).  
The normal use of this function is to give it three 
parameters, plot(x,y,str), where x and y are vectors 
of the same length, and str is a string containing 
one or more optional line color and style control 
characters.
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11.2 2-D Plotting

x=linspace(-1.5,1.5,30);

clr='rgbk';

for pwr=1:4
plot(x,x.^pwr,clr(pwr));

hold on;

end

xlabel('x');

ylabel('x^N');

title('power of x');

legend({'N=1','N=2','N=3','N=4'},'Location','SouthEast')

•
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11.2 2-D Plotting
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11.2.4 Other 2-D Plot 
Capabilities

• You can also create some more exotic plots that are 
powerful methods for visualizing real data:

• bar(x,y) produces a bar graph with the values in y positioned 
at the horizontal locations in x.

• fill(x,y,n) produces a filled polygon defined by the coordinates 
in x and y.

• hist(y,m) produces a histogram plot with the values in y 
counted into bins defines by x.

• pie(y) makes a pie chart of the values in y.
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11.3 3-D Plotting

• The simplest method of 3-D plotting is to extend our 
2-D plots by adding a set of z values.

• The function plot3(x,y,z,str) consumes three vectors 
of equal size and connect the points defined by 
those vectors in 3-D space.  The optional str 
specifies color and/or line style.
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11.3 3-D Plotting

x=0:0.1:3.*pi;
y1=zeros(size(x));
z1=sin(x);
z2=sin(2.*x);
z3=sin(3.*x);
y3=ones(size(x));
y2=y3./2;
plot3(x,y1,z1, 'r',x,y2,z2, 'b',x,y3,z3, 'g')
grid on
xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')
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11.3 3-D Plotting
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11.4 Surface Plots

• Three fundamental functions are used to create 3-D 
surface plots:

 meshgrid(x,y) accepts the x and y vectors that bound the 
plaid and replicates the rows and columns appropriately to 
for 3-D plots.

 mesh(xx,yy,zz) plots the surface as white facets outlined 
by colored lines.

 surf(xx,yy,zz) plots the surface as colored facets outlines 
by black lines



Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Surface Plots

x=-3:3; y = x ;
[xx,yy]=meshgrid(x,y);
zz=xx.^2 + yy.^2;
mesh(xx,yy,zz)
axis tight
title('z = x^2 + y^2')
xlabel('x'),ylabel('y'),zlabel('z')
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11.4 Surface Plots
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11.4 Surface Plots

● What the following code plot on the screen?

x=-10:.5:10;
y=x;
[X Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2) + eps;
Z=sin(R)./R;
mesh(Z);
xlabel('x'),ylabel('y'),zlabel('z')
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11.4 Surface Plots
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11.4 Rotating Discrete 
Functions

• Perform a rotation about the x-axis.  After going 
through the meshgrid() to produce the a plaid, we 
run meshgrid().
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11.4 Rotating Discrete 
Functions

• Complex surface plots can be drawn from simple 2-
D profiles.

• Consider a 2-D profile of a fictitious machine part.
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11.4 Rotating Discrete 
Functions
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11.5 Engineering Example – 
Visualizing Geographic Data
Problem:

• We are given two files of data: atlanta.txt, which 
represents the streets of Atlanta in graphical form, 
and ttimes.txt, which give the travel times between 
Atlanta suburbs and the city center.

• We are asked to present these data in a manner 
that will help to visualize and validate the data.

Analyze the Data:
1. Determine the file format.  Since there are no strings in the 
file, it should be suitable to be read using the built-in 
dlmread(...) function.

•
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11.5 Engineering Example – 
Visualizing Geographic Data

Analyze the Data:
2. Discern the street map file content.  The atlanta.txt file contains 
columns with the following information: columns 3-6 are pairs of 
latitude, longitude coordinates (x1,000,000) for ends of streets, 
column 7 contains number in the range 1-6 which indicates the 
type of street:

53423.00 53343.00 -84546100.00 33988160.00 -84556050.00 33993620.00 1.00 3025.00

54528.00 53351.00 -84546080.00 33988480.00 -84558400.00 33995480.00 1.00 3025.00

130081.00 128176.00 -84243880.00 33780010.00 -84249980.00 33800840.00 1.00 3025.00

130105.00 128192.00 -84243590.00 33780060.00 -84249740.00 33800840.00 1.00 3025.00

58150.00 71086.00 -84509920.00 33944340.00 -84517200.00 33958190.00 1.00 3025.00

...
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11.5 Engineering Example – 
Visualizing Geographic Data

Analyze the Data:
3.  Discern the travel time content.  The ttimes.txt contains 
columns with the following information: columns 1and 2 are used 
to build a plaid (much like the result of meshgrid()), columns 4,5 
represent latitude/longitude (x1,000,000), and column 6 
represents the z values of the plaid (it would be reasonable to 
assume that it represents time in minutes).  

1 1 76 -84575725 33554573 14.34

1 2 77 -84569612 33554573 0

1 3 78 -84563499 33554573 0

1 4 79 -84557387 33554573 0

1 5 80 -84551274 33554573 51.66

…
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11.5 Engineering Example – 
Visualizing Geographic Data
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11.5 Engineering Example – 
Visualizing Geographic Data
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Introduction

● The graphical techniques we have seen so far 
have been 2-D and 3-D plots.  These 
presentations are easily generated when we 
have a mathematical model of the data.

● However, many sensors observing the world do 
not have that underlying model of the data 
(which we cal images), leaving the 
interpretation of the images to the human 
observer.
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13.1 Nature of an Image

● An image is a 2-D sheet on which the color at any point can 
have essentially infinite variability.

● We can represent any image as a 2-D, MxN array of points 
usually referred to as picture elements, or pixelspixels.

● Each pixel is “painted” by blending variable amounts of the 
three primary colors: Red (R), Green (G), and Blue (B).

● The color resolution is measured by the number of bits in the 
words containing the red, green, and blue (RGB) components.
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13.1 Nature of an Image
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13.2 Image Types

● Images are provided in a wide variety of formats.

● According to MATLAB documentation, it recognizes files in:
TIFF, PNG, HDF, BMP, JPEG, GIG, and others.

● True color images are stored in a MxNx3 array where every pixel 
is directly stored as uint8 values in three layers of the 3-D array:

The first layer contains the red values.

Second layer contains the green values.

Third layer contains the red values.

● Gray scale images only save the black-to-white intensity value for 
each pixel as a single uint8 values rather than three values.
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13.2 Image Types
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13.2 Image Types

Black-and-White Color

Gray scale
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13.2.3 Color Mapped Images

• Color mapped, or indexed,images keep a separate map 
either 256 items or up to 32,768 items long.

• This is done for maximum economy of memory.  
Therefore, each item in the color map contains the red, 
blue, and green values of a color, respectively.

• As illustrated in the following figure, a certain pixel index 
might contain the value 143.  The color to be shown at 
that pixel location would be the 143rd color set (RGB) on 
the color map.
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13.2 Image Types
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13.3 Reading, Displaying, and 
Writing Images

• Image files are stored in many different 
formats

• We will concern ourselves only with .jpg files.

• Note, however, that .jpg files use a 
mathematical compression technique that 
cannot guarantee that the uncompressed 
image matches the original.
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13.3 Reading, Displaying, and 
Writing Images

• MATLAB uses one image reading function, 
imread(...) for all image file types:

img = imread(file) reads a file

imshow(img) or image(img) displays the image

imwrite(img, file, ‘.jpg’) writes a modified image 
to a file in JPEG format.
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13.4 Operating on Images

• Since images are stored as arrays, we can 
employ the normal operations of creating, 
manipulation, slicing, and concatenation.

• We can uniformly shrink or stretch an array 
(image) to match an exact size.

• Assume that the horizontal size is good, but 
we want to stretch or shrink the image 
vertically.



Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.1 Stretching or Shrinking 
Images

• We can use the following commands to shrink 
the image:

rowv=linespace(1,rows,nrows) generates new 
row indices

rowv=round(rowv) rounds row numbers

newpicture=picture(rowv,cols,:) generate a re-
sampled image 
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13.4.2 Color Masking

• Consider an image that is 2400x1600 JPEG 
image that can be taken with any good digital 
camera.

• The appearance of the Vienna garden is 
somewhat marred by the fact that the sky is 
gray, not blue.  Fortunately, we have a picture 
of a cottage with nice, clear blue sky.
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13.4.2 Color Masking
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13.4.2 Color Masking

• So the solution for this problem is to replace the 
gray sky in the Vienna garden with blue sky from 
the cottage picture.

• To do this we need to explore the Vienna picture 
to determine how to distinguish the gray sky 
from the rest of the picture.

• The solution is to choose a representative row in 
the image that includes some sky and look at 
the red, blue, and green values for sky pixels.
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13.4.2 Color Masking

• So the solution for this problem is to replace the 
gray sky in the Vienna garden with blue sky from 
the cottage picture.

• To do this we need to explore the Vienna picture 
to determine how to distinguish the gray sky 
from the rest of the picture.

• The solution is to choose a representative row in 
the image that includes some sky and look at 
the red, blue, and green values for sky pixels.
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13.4 Operating on Images



Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• As we examine the plots we see that the red, 
green, and blue values for the open sky are all 
around 250 because the sky is almost white.

• We could decide for example to define the sky 
as all those pixels where the red, blue, and 
green values are all above a chosen threshold, 
and could safely set that threshold at 160.
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13.4.2 Color Masking

• However, it would be unfortunate to turn the 
hair of the lady blue, and there are fountains 
and walkways that might also logically appear 
to be the sky.

• We can prevent this embarrassment to limiting 
the color replacement to the upper portion of 
the picture above row 700.
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13.4.2 Color Masking

• So we are ready to create the code that will 
replace the gray sky with blue:

v=imread('Vienna.jpg'); w=imread('Witney.jpg');

image(w); figure;

thres=160;

layer=(v(:,:,1)>thres) & (v(:,:,2)>thres) & (v(:,:,3)>thres);

mask(:,:,1)=layer; mask(:,:,2)=layer; mask(:,:,3)=layer;

mask(700:end,:,:)=false;

nv=v; nv(mask)=w(mask);

image(nv);

imwhite(nv,'newVienna.jpg','jpg');
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13.4.2 Color Masking
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Figure 13.7



Let’s write some Code …



Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example – 
Detecting Edges

• While images are powerful methods for 
delivering information to the human eye, they 
have limitations when being used by computer 
programs.

• Our eyes and brain have astonishing ability to 
interpret the content of an image, while 
computer programs need a lot of help.
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13.5 Engineering Example – 
Detecting Edges

• One operation commonly performed to reduce 
the complexity of an image is edge detection.

• The image is replaced by a very small number of 
points that mark the edges of “interesting 
artifacts”.

• The key element of the edge detection algorithm 
is the ability to determine unambiguously 
whether a pixel is part of the object of interest or 
not.

•
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13.5 Engineering Example – 
Detecting Edges

• Edge detection using
the Sobel method
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13.5 Engineering Example – 
Detecting Edges
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13.5 Engineering Example – 
Detecting Edges

                 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

                 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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13.5 Engineering Example – 
Detecting Edges
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