
Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 11
Plotting

Chapter 13
Images

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Outline

11.1 Plotting in General
11.2 2-D Plotting
11.3 3-D Plotting
11.4 Surface Plots
11.5 Manipulating Plotted Data

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.1 Plotting in General

• Plotting is perhaps the most powerful aspect of
MATLAB. Plots can be two-or three-dimensional with
a wide variety of appearance to the plots

• All plots are hosted in a separate window, a figure
• A number of capabilities can be used with any plot:

– Configuring the axes
– Setting a color map
– Turning on a grid
– Title, axis labels and legends
– Text annotations
– Multiple plots on one figure

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.1 Plotting in General

• axis([xl xu yl yu]) overrides the automatic computation of the
axis values.

• colormap <specification> establishes a sequence of colors.
The legal specification values are listed in Appendix A.
Examples of these are autumn, bone, cool, etc.

• grid on puts a grid on the plot.

• hold on hold the existing data on the figure to allow
subsequent plotting call to be added to the current figure
without erasing the existing plot; hold off redraws the current
figure erasing the previous contents.

• legend(...) creates a legend box

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.1.2 Simple Functions for
Enhancing Plots

• text(x, y, {z}, <message>) places the text provided at the
specified location on a 2-D plot, or at the (x,y,z) location on a
3-D plot.

• title(...) places the text provided as the title of the current plot

• view(az, el) sets the angle form which to view the plot.

• xlabel(...) sets the string provided as the label for the x-axis.

• ylabel(...) sets the string provided as the label for the y-axis.

• zlabel(...) sets the string provided as the label for the z-axis.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.1.3 Multiple Plots on One
Figure

• Within the current figure, you can place
multiple plots with the subplot command.

• The function subplot(r,c,n) divides the current figure
into r rows and c column of equally spaced areas
and then establishes the nth of these as the current
figure:

...

subplot(3,2,1); % divides plotting are in 3x2 areas.

plot(x,sin(x)); % plots x vs. sin(x) in 1st. Window

...

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.2 2-D Plotting

• The basic function to use for 2-D plots is plot(...).
The normal use of this function is to give it three
parameters, plot(x,y,str), where x and y are vectors
of the same length, and str is a string containing
one or more optional line color and style control
characters.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.2 2-D Plotting

x=linspace(-1.5,1.5,30);

clr='rgbk';

for pwr=1:4
plot(x,x.^pwr,clr(pwr));

hold on;

end

xlabel('x');

ylabel('x^N');

title('power of x');

legend({'N=1','N=2','N=3','N=4'},'Location','SouthEast')

•

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.2 2-D Plotting

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.2.4 Other 2-D Plot
Capabilities

• You can also create some more exotic plots that are
powerful methods for visualizing real data:

• bar(x,y) produces a bar graph with the values in y positioned
at the horizontal locations in x.

• fill(x,y,n) produces a filled polygon defined by the coordinates
in x and y.

• hist(y,m) produces a histogram plot with the values in y
counted into bins defines by x.

• pie(y) makes a pie chart of the values in y.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.3 3-D Plotting

• The simplest method of 3-D plotting is to extend our
2-D plots by adding a set of z values.

• The function plot3(x,y,z,str) consumes three vectors
of equal size and connect the points defined by
those vectors in 3-D space. The optional str
specifies color and/or line style.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.3 3-D Plotting

x=0:0.1:3.*pi;
y1=zeros(size(x));
z1=sin(x);
z2=sin(2.*x);
z3=sin(3.*x);
y3=ones(size(x));
y2=y3./2;
plot3(x,y1,z1, 'r',x,y2,z2, 'b',x,y3,z3, 'g')
grid on
xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.3 3-D Plotting

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Surface Plots

• Three fundamental functions are used to create 3-D
surface plots:

 meshgrid(x,y) accepts the x and y vectors that bound the
plaid and replicates the rows and columns appropriately to
for 3-D plots.

 mesh(xx,yy,zz) plots the surface as white facets outlined
by colored lines.

 surf(xx,yy,zz) plots the surface as colored facets outlines
by black lines

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Surface Plots

x=-3:3; y = x ;
[xx,yy]=meshgrid(x,y);
zz=xx.^2 + yy.^2;
mesh(xx,yy,zz)
axis tight
title('z = x^2 + y^2')
xlabel('x'),ylabel('y'),zlabel('z')

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Surface Plots

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Surface Plots

● What the following code plot on the screen?

x=-10:.5:10;
y=x;
[X Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2) + eps;
Z=sin(R)./R;
mesh(Z);
xlabel('x'),ylabel('y'),zlabel('z')

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Surface Plots

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Rotating Discrete
Functions

• Perform a rotation about the x-axis. After going
through the meshgrid() to produce the a plaid, we
run meshgrid().

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Rotating Discrete
Functions

• Complex surface plots can be drawn from simple 2-
D profiles.

• Consider a 2-D profile of a fictitious machine part.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.4 Rotating Discrete
Functions

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.5 Engineering Example –
Visualizing Geographic Data
Problem:

• We are given two files of data: atlanta.txt, which
represents the streets of Atlanta in graphical form,
and ttimes.txt, which give the travel times between
Atlanta suburbs and the city center.

• We are asked to present these data in a manner
that will help to visualize and validate the data.

Analyze the Data:
1. Determine the file format. Since there are no strings in the
file, it should be suitable to be read using the built-in
dlmread(...) function.

•

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.5 Engineering Example –
Visualizing Geographic Data

Analyze the Data:
2. Discern the street map file content. The atlanta.txt file contains
columns with the following information: columns 3-6 are pairs of
latitude, longitude coordinates (x1,000,000) for ends of streets,
column 7 contains number in the range 1-6 which indicates the
type of street:

53423.00 53343.00 -84546100.00 33988160.00 -84556050.00 33993620.00 1.00 3025.00

54528.00 53351.00 -84546080.00 33988480.00 -84558400.00 33995480.00 1.00 3025.00

130081.00 128176.00 -84243880.00 33780010.00 -84249980.00 33800840.00 1.00 3025.00

130105.00 128192.00 -84243590.00 33780060.00 -84249740.00 33800840.00 1.00 3025.00

58150.00 71086.00 -84509920.00 33944340.00 -84517200.00 33958190.00 1.00 3025.00

...

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.5 Engineering Example –
Visualizing Geographic Data

Analyze the Data:
3. Discern the travel time content. The ttimes.txt contains
columns with the following information: columns 1and 2 are used
to build a plaid (much like the result of meshgrid()), columns 4,5
represent latitude/longitude (x1,000,000), and column 6
represents the z values of the plaid (it would be reasonable to
assume that it represents time in minutes).

1 1 76 -84575725 33554573 14.34

1 2 77 -84569612 33554573 0

1 3 78 -84563499 33554573 0

1 4 79 -84557387 33554573 0

1 5 80 -84551274 33554573 51.66

…

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.5 Engineering Example –
Visualizing Geographic Data

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

11.5 Engineering Example –
Visualizing Geographic Data

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Outline

13.1 Nature of an Image
13.2 Image Types
13.3 Reading, Displaying, and Writing
Images
13.4 Operating on Images

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Introduction

● The graphical techniques we have seen so far
have been 2-D and 3-D plots. These
presentations are easily generated when we
have a mathematical model of the data.

● However, many sensors observing the world do
not have that underlying model of the data
(which we cal images), leaving the
interpretation of the images to the human
observer.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.1 Nature of an Image

● An image is a 2-D sheet on which the color at any point can
have essentially infinite variability.

● We can represent any image as a 2-D, MxN array of points
usually referred to as picture elements, or pixelspixels.

● Each pixel is “painted” by blending variable amounts of the
three primary colors: Red (R), Green (G), and Blue (B).

● The color resolution is measured by the number of bits in the
words containing the red, green, and blue (RGB) components.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.1 Nature of an Image

M
 r

ow
s

N columns

RED BLUE

GREEN

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.2 Image Types

● Images are provided in a wide variety of formats.

● According to MATLAB documentation, it recognizes files in:
TIFF, PNG, HDF, BMP, JPEG, GIG, and others.

● True color images are stored in a MxNx3 array where every pixel
is directly stored as uint8 values in three layers of the 3-D array:

The first layer contains the red values.

Second layer contains the green values.

Third layer contains the red values.

● Gray scale images only save the black-to-white intensity value for
each pixel as a single uint8 values rather than three values.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.2 Image Types

True Color

M
 r

ow
s

N columns

RED

BLUE
GREEN

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.2 Image Types

Black-and-White Color

Gray scale

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.2.3 Color Mapped Images

• Color mapped, or indexed,images keep a separate map
either 256 items or up to 32,768 items long.

• This is done for maximum economy of memory.
Therefore, each item in the color map contains the red,
blue, and green values of a color, respectively.

• As illustrated in the following figure, a certain pixel index
might contain the value 143. The color to be shown at
that pixel location would be the 143rd color set (RGB) on
the color map.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.2 Image Types

Bit Mapped

M
 r

ow
s

N columns 3

25
6

ro
w

s

143 RED
BLUE

GREEN

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.3 Reading, Displaying, and
Writing Images

• Image files are stored in many different
formats

• We will concern ourselves only with .jpg files.

• Note, however, that .jpg files use a
mathematical compression technique that
cannot guarantee that the uncompressed
image matches the original.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.3 Reading, Displaying, and
Writing Images

• MATLAB uses one image reading function,
imread(...) for all image file types:

img = imread(file) reads a file

imshow(img) or image(img) displays the image

imwrite(img, file, ‘.jpg’) writes a modified image
to a file in JPEG format.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4 Operating on Images

• Since images are stored as arrays, we can
employ the normal operations of creating,
manipulation, slicing, and concatenation.

• We can uniformly shrink or stretch an array
(image) to match an exact size.

• Assume that the horizontal size is good, but
we want to stretch or shrink the image
vertically.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.1 Stretching or Shrinking
Images

• We can use the following commands to shrink
the image:

rowv=linespace(1,rows,nrows) generates new
row indices

rowv=round(rowv) rounds row numbers

newpicture=picture(rowv,cols,:) generate a re-
sampled image

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• Consider an image that is 2400x1600 JPEG
image that can be taken with any good digital
camera.

• The appearance of the Vienna garden is
somewhat marred by the fact that the sky is
gray, not blue. Fortunately, we have a picture
of a cottage with nice, clear blue sky.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• So the solution for this problem is to replace the
gray sky in the Vienna garden with blue sky from
the cottage picture.

• To do this we need to explore the Vienna picture
to determine how to distinguish the gray sky
from the rest of the picture.

• The solution is to choose a representative row in
the image that includes some sky and look at
the red, blue, and green values for sky pixels.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• So the solution for this problem is to replace the
gray sky in the Vienna garden with blue sky from
the cottage picture.

• To do this we need to explore the Vienna picture
to determine how to distinguish the gray sky
from the rest of the picture.

• The solution is to choose a representative row in
the image that includes some sky and look at
the red, blue, and green values for sky pixels.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4 Operating on Images

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• As we examine the plots we see that the red,
green, and blue values for the open sky are all
around 250 because the sky is almost white.

• We could decide for example to define the sky
as all those pixels where the red, blue, and
green values are all above a chosen threshold,
and could safely set that threshold at 160.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• However, it would be unfortunate to turn the
hair of the lady blue, and there are fountains
and walkways that might also logically appear
to be the sky.

• We can prevent this embarrassment to limiting
the color replacement to the upper portion of
the picture above row 700.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

• So we are ready to create the code that will
replace the gray sky with blue:

v=imread('Vienna.jpg'); w=imread('Witney.jpg');

image(w); figure;

thres=160;

layer=(v(:,:,1)>thres) & (v(:,:,2)>thres) & (v(:,:,3)>thres);

mask(:,:,1)=layer; mask(:,:,2)=layer; mask(:,:,3)=layer;

mask(700:end,:,:)=false;

nv=v; nv(mask)=w(mask);

image(nv);

imwhite(nv,'newVienna.jpg','jpg');

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.4.2 Color Masking

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Figure 13.7

Let’s write some Code …

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example –
Detecting Edges

• While images are powerful methods for
delivering information to the human eye, they
have limitations when being used by computer
programs.

• Our eyes and brain have astonishing ability to
interpret the content of an image, while
computer programs need a lot of help.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example –
Detecting Edges

• One operation commonly performed to reduce
the complexity of an image is edge detection.

• The image is replaced by a very small number of
points that mark the edges of “interesting
artifacts”.

• The key element of the edge detection algorithm
is the ability to determine unambiguously
whether a pixel is part of the object of interest or
not.

•

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example –
Detecting Edges

• Edge detection using
the Sobel method

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example –
Detecting Edges

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example –
Detecting Edges

 XX

 XX

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.5 Engineering Example –
Detecting Edges

	Slide 1
	Outline
	11.1 Plotting in General
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	13.1 Nature of an Image
	Slide 31
	13.2 Image Types
	Slide 33
	13.3 Reading, Displaying, and Writing Images
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	13.4 Operating on Images
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Let’s write some Code …
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

