Chapter 6
Character Strings

PEARSON ALWAYS LEARNING

Outline

6.1 Character String Concepts: Mapping and Casting
6.2 MATLAB® Implementation

6.3 Format Conversion Functions

6.4 Character String Operations

6.5 Arrays of Strings

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Introduction

Individual characters have an internal numerical representation. The dominant
representation is defined by the American Standard Code for Information
Interchange (ASCII), where upper and lower case characters, numbers, and
punctuation marks are represented by numbers between 0 and 127.

Dec HxOct Char Dec Hx Oct Himl Chr |Dec Hx Oct Html Chrl Dec Hyx Oct Himl Chr
0 0 000 NUL (nuall) 32 20 040 Space| 64 40 100 s#64; B | 98 60 140 ƌ °
1 1 001 50H (start of heading) 33 21 041 !: ! 65 41 101 «#65; A [97 61 141 9: a
Z Z 00Z 5TX (start of text) 34 22 042 " 7 66 42 102 «#66; B | 95 62 142 ɖ: b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 63 143 &«#99; «©
4 4 004 EOT (end of transmission) 36 24 044 #3667 63 44 104 «#63; D |100 64 144 d d
5 5 005 ENQ (encuiry) 37 25 045 «#37: % 69 45 105 «#69; E (101 65 145 e &
6 6 006 ACE (acknowledge) 38 Ze 048 #3867 & 70 46 106 «#70; F |102 g6 146 f €
7 7 007 BEL (bell) 39 27 047 ' 71 47 107 «#71; G (103 67 147 g: 9
& & 010 B3 (backspace) a0 23 050 (72 45 110 «#72; H |104 65 150 h h
9 9 011 TAE (horizontal tab) 41 29 051 &§4l:;) 73 49 111 «#73; I |105 g9 151 i 1
10 & 012 LF (NL line feed, new line)| 42 Zi 052 * * 74 44 112 «#74; T |106 64 152 j 1]
11 B 013 VT (wertical tab) 43 ZB 053 «#43; + 75 4B 113 «#75; E |107 6B 153 k k
lZ C 014 FF (NP form feed, new page)| 44 ZC 054 , 76 4C 114 «#76; L |108 &C 154 l 1
13 D 015 CR ({carriage return) 45 2D 055 - - 77 4D 115 «#77; M (109 6D 155 m m
14 E 016 30 (shift out) 46 ZE 056 . . 78 4E 116 «#78; N [110 6E 156 l0: n
15 F 017 3I (shift in) 47 ZF 0587 «§47: / 79 4F 117 I 0 (111 6F 157 &#lll; o
16 10 020 DLE (data link escape) 48 30 060 «#48; 0 80 50 120 &«#80; P (112 70 160 &#lla: p
17 11 0Z1 DC1 (dewice contral 1) 49 31 061 «#49: 1 g1 51 121 «#81l; 0 (113 71 161 q: O
1lg 12 022 DCE2 (dewvice contral 2Z) 50 32 02 &«#50; 2 82 52 122 Z; R (114 72 162 &#ll4; T
19 13 023 DC3 (dewice contral 3) 51 33 063 3 3 83 53 123 S 3 (115 73 163 s =
Z0 14 024 DC4 (dewvice contral 4 52 34 064 «#52; 4 g4 54 124 «#84; T (116 74 164 &#ll6: ©
21 15 025 NAE (negatiwve acknowledge] 53 35 065 5: 5 85 55 125 U U (117 75 165 u u
Z2 16 0Z6 3YN (synchronous idle) G54 36 066 6: 6 86 56 126 V ¥ (118 76 166 v: v
23 17 027 ETE (end of trans. block) 55 37 067 «#55: 7 87 57 127 «#87; W (119 77 167 w W
24 18 030 CAN (cancel) 56 38 070 «#56; 8 88 55 130 S X 120 78 170 &#la0; =
25 19 031 EM (end of medium) 57 39 071 «#57: 9 89 50 131 %9; T (121 79 171 y: ¥
Z6 14 032 3UE (substitute) S8 34 072 :: : 90 5A 132 «#90; £ (122 7 172 &#l22: 2
27 1B 033 E3C (escape) 59 3B 073 #3539 ; 91 5E 133 «#91; [|123 7B 173 { |
23 1C 034 F3 (file separataor) 60 3C 074 «#60; < 9z 50 154 «#92; % |124 70 174 | |
Z9 1D 035 G3 (group separator) 61 3D 075 «#6l: = 93 5D 155 «#93;] |125 70 175 } |
30 1E 036 B3 (record separator) 62 3E 076 &«#B82: > 94 S5E 136 ^ ~ [l26 7E 176 &flag; -
31 1F 037 U3 |(unit separator) 63 3F 077 «#63; 2 95 5F 137 «#95; _ |127 7F 177 DEL

Strings of characters represent numerical values to the user: numerical values are
stored in a special, internal representation for efficient numerical computation.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.1 Character String Concepts:
Mapping and Casting

We recognize that internally, any computer holds the values of variables as a
series of ones and zeros. However, this is not really helpful to programmers.

Some languages require the programmer to specify how the content of each
variable must be interpreted. Others, like MATLAB will infer the interpretation
from the data stored in a variable.

 Mapping is how a program determines what the content of a particular
variable means.

e Casting provide the programmer the ability to change the program’s
interpretation.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Mapping and Casting (continued)

For example, we already understand the data types double and 1logical.

A = [2 4 6] resultsinthe machine believing that A contains data of type
double.

big = A > 3 resultsin the machine believing that B contains logical
values. {MATLAB displays this as if it were numbers: [0 1 1].}

If we wanted to interpretbig as double values, we would need to say:
nums = double (big), thereby casting big to type double

Frequently, MATLAB reconsiders the current mapping of a variable depending
on the operations being performed, but explicit casting is the safest way to
preserve integrity in the data.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Mapping and Casting (continued)

If we issue the commands:

>> uint8(A’)

The answer will be ans = 65 because in an 8-bit unsigned integer
representation it has a value of 65.

>> char(100)

The answer will be ans = d because the 100t element in the ASCII table is the
‘d’ character.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.2 MATLAB® Implementation of
Character Strings

Strings in MATLAB are defined by putting zero or more printable characters
between single quote marks:

str = 'abcdefg'

* The variable stxr internally becomes a vector of length 7, one for each
character.

* Externally, however, MATLAB assumes a mapping whereby the values of
each vector element represent different printable characters according to
the ASCII table, and makes the class of str to be char.

* To see the ASCII equivalents of each character, we cast str to double:
e ASCII val = double(str) resultingin the values:
[97,98,99,100,101,102,103]

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.3 Format Conversion Functions

Converting from numbers to strings:
e int2str (x) returnsa string assuming x is an integer
e num2str (x) returns a string assuming x has fractional parts

* sprintf (<fmt>, <params>) explicitly formats a string

Converting from strings to numbers:
* input (<prompt>) is a good way to convert automatically

e str2num(str) will convert a string representing well formatted
numbers

e sscanf (str) formats a string into a number or vector/matrix of
number

See MATLAB help files for details.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.4 Character String Operations

Since a string is just a vector of ASCII values, any operations you can perform
on a vector can be performed on a string. For example:

str = 'abcdefqg'

str(l:2:end) -> 'aceg'

str > 'e' => [0 00O OO 1 1]

str+3 -> [100 101 102 103 104 105 106]
% because of the addition

char(str + 'A' - 'a') -> 'ABCDEFG'

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.5 Arrays of Strings

* Arrays of strings can be built using the char(...) casting function, and
uneven strings are padded with spaces.

char ('abecde', 'ed', 'xyz') -—>
abcde
cd
XyZ

 However, we usually collect strings in a Cell Array (see Ch 7)

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Let’s Write some Code ...

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example
Encryption

As public access to information becomes more pervasive, there is increasing
interest in the use of encryption to protect intellectual property and private
communications from unauthorized access.

A cryptosystem is a way of encoding and decoding messages so that only

certain people are able to read them. This case presents a cryptosystem based on
matrix algebra and implemented using MATLAB. It is much more secure than
simple systems you may have seen, such as replacement of each letter by a
different letter.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example
Encryption

Encryption procedure

1. Translate the 15-character message to a 3 x 5 matrix of ASCII character codes.

2. Transform the matrix to an encrypted 3x5 matrix of ASCII character codes, by:
(a) subtracting 32 from each element of the matrix (so it is in 32-126 range)

(b) multiplying the matrix by a given 3 x 3 matrix

(c) reducing each matrix element to its remainder modulo 95

(d) adding 32 to each element of the resulting matrix (steps © and (d) are used to map the
numbers to the 32-126 range).

3. Translate the encrypted 3x5 matrix of ASCII character codes to an encrypted 15-character
message.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example
Encryption

Decryption procedure

1. Translate the 15-character encrypted message to a 3 x 5 matrix of ASCII character codes.

2. Transform the encrypted matrix back to the original 3x5 matrix of ASCIl character codes,
by:

(a) subtracting 32 from each element of the matrix
(b) multiplying the matrix by the inverse of a given 3x3 matrix

(c) reducing each matrix element to its remainder modulo 95

(d) adding 32 to each element of the resulting matrix (steps © and (d) are used to map the
numbers to the 32-126 range).

3. Translate the original 3x5 matrix of ASCII character codes back to the original 15-character
message.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example
Encryption

1= 3 = '"Thi=s iz a test!! % zimple message

2 - wval = double(s); % convert it into numbers

3= nume = reshape(val,3,5); % arrange array into a 3x5 matrix

4

3 % The transformation is affected by mmltiplying our matrix

[% on the left by a 3x3 matrix. To make the encryption possible
7 % we MOST:

] % "'multiply by a 3x3 matrix whose entries are all integers

g % and whose inverse has entries that are all integers'

alli e m=[15 3; 2 11 8; 4 24 21]:

11 % inv{m)=[39 -33 7;-10 9 -2:4 -4 1]

12

13 % Prinmtable characters have ASCIT code=s in the range 32 to 126
14 % we must adjust the 3xX> message matrix by subtracting 32

15 = nume = nume -— 32;

16 % now num contains values in the range 0 to 84

17

18 % Apply the matrix transformation and adjust so that transformed
19 % mess=zage iz in the ASCIT range 32 to 126

20 — ncoded = mod (m* (nume) , 95) + 32;

21

22 % convert these numbers to an array of characters

23 — scoded = reshape (char (neoded) 1,15)

24 % =o the encoded message is scode =]WQluh\xSr¥SM2Uy

25

26 % Decrypting a mes=sage requires to reverse the above steps To recover
27 % the original.

28 — sdecoded = reshape (double (scoded) ,3,5);

29 — ndecoded = mod(inv(m) * (sdecoded-32),953) + 32:

30 — sdecoded = reshape (char (ndecoded) ,1,15)

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example
Encryption

»>» cryptosystem
5=

Thi=s is a test!

zcoded =

IWOlu\x5rYSM2 Uy

sdecoded =

Thi= i= a test!

fx 5>

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Homework on Chapter 6 is posted on the website:

http://www.ee.nmt.edu/~erives/289 F12/EE289.html

Homework is due within a week

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

