
Chapter 6

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Character Strings

Outline

6.1 Character String Concepts: Mapping and Casting

6.2 MATLAB® Implementation

6.3 Format Conversion Functions

6.4 Character String Operations

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.4 Character String Operations

6.5 Arrays of Strings

Introduction

Individual characters have an internal numerical representation. The dominant
representation is defined by the American Standard Code for Information
Interchange (ASCII), where upper and lower case characters, numbers, and
punctuation marks are represented by numbers between 0 and 127.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Strings of characters represent numerical values to the user: numerical values are
stored in a special, internal representation for efficient numerical computation.

6.1 Character String Concepts:

Mapping and Casting

We recognize that internally, any computer holds the values of variables as a

series of ones and zeros. However, this is not really helpful to programmers.

Some languages require the programmer to specify how the content of each

variable must be interpreted. Others, like MATLAB will infer the interpretation

from the data stored in a variable.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

from the data stored in a variable.

• Mapping is how a program determines what the content of a particular

variable means.

• Casting provide the programmer the ability to change the program’s

interpretation.

Mapping and Casting (continued)

For example, we already understand the data types double and logical.

A = [2 4 6] results in the machine believing that A contains data of type

double.

big = A > 3 results in the machine believing that B contains logical

values. {MATLAB displays this as if it were numbers: [0 1 1].}

If we wanted to interpret big as double values, we would need to say:

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

If we wanted to interpret big as double values, we would need to say:

nums = double(big), thereby casting big to type double

Frequently, MATLAB reconsiders the current mapping of a variable depending

on the operations being performed, but explicit casting is the safest way to

preserve integrity in the data.

Mapping and Casting (continued)

If we issue the commands:

>> uint8(‘A’)

The answer will be ans = 65 because in an 8-bit unsigned integer

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The answer will be ans = 65 because in an 8-bit unsigned integer

representation it has a value of 65.

>> char(100)

The answer will be ans = d because the 100th element in the ASCII table is the

‘d’ character.

6.2 MATLAB® Implementation of

Character Strings

Strings in MATLAB are defined by putting zero or more printable characters

between single quote marks:

str = 'abcdefg'

• The variable str internally becomes a vector of length 7, one for each

character.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

character.

• Externally, however, MATLAB assumes a mapping whereby the values of

each vector element represent different printable characters according to

the ASCII table, and makes the class of str to be char.

• To see the ASCII equivalents of each character, we cast str to double:

• ASCII_val = double(str) resulting in the values:

[97,98,99,100,101,102,103]

6.3 Format Conversion Functions

Converting from numbers to strings:

• int2str(x) returns a string assuming x is an integer

• num2str(x) returns a string assuming x has fractional parts

• sprintf(<fmt>, <params>) explicitly formats a string

Converting from strings to numbers:

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting from strings to numbers:

• input(<prompt>) is a good way to convert automatically

• str2num(str) will convert a string representing well formatted

numbers

• sscanf(str) formats a string into a number or vector/matrix of

number

See MATLAB help files for details.

6.4 Character String Operations

Since a string is just a vector of ASCII values, any operations you can perform

on a vector can be performed on a string. For example:

str = 'abcdefg'

str(1:2:end) -> 'aceg'

str > 'e' -> [0 0 0 0 0 1 1]

str+3 -> [100 101 102 103 104 105 106]

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

str+3 -> [100 101 102 103 104 105 106]

% because of the addition

char(str + 'A' - 'a') -> 'ABCDEFG'

6.5 Arrays of Strings

• Arrays of strings can be built using the char(…) casting function, and

uneven strings are padded with spaces.

char('abcde', 'cd', 'xyz') ->

abcde

cd

xyz

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

xyz

• However, we usually collect strings in a Cell Array (see Ch 7)

Let’s Write some Code …

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example

Encryption

As public access to information becomes more pervasive, there is increasing

interest in the use of encryption to protect intellectual property and private

communications from unauthorized access.

A cryptosystem is a way of encoding and decoding messages so that only

certain people are able to read them. This case presents a cryptosystem based on

matrix algebra and implemented using MATLAB. It is much more secure than

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

matrix algebra and implemented using MATLAB. It is much more secure than

simple systems you may have seen, such as replacement of each letter by a

different letter.

6.6 Engineering Example

Encryption

Encryption procedure

1. Translate the 15-character message to a 3 × 5 matrix of ASCII character codes.

2. Transform the matrix to an encrypted 3×5 matrix of ASCII character codes, by:

(a) subtracting 32 from each element of the matrix (so it is in 32-126 range)

(b) multiplying the matrix by a given 3 × 3 matrix

(c) reducing each matrix element to its remainder modulo 95

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(c) reducing each matrix element to its remainder modulo 95

(d) adding 32 to each element of the resulting matrix (steps © and (d) are used to map the

numbers to the 32-126 range).

3. Translate the encrypted 3×5 matrix of ASCII character codes to an encrypted 15-character

message.

6.6 Engineering Example

Encryption

Decryption procedure

1. Translate the 15-character encrypted message to a 3 × 5 matrix of ASCII character codes.

2. Transform the encrypted matrix back to the original 3×5 matrix of ASCII character codes,

by:

(a) subtracting 32 from each element of the matrix

(b) multiplying the matrix by the inverse of a given 3×3 matrix

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

(b) multiplying the matrix by the inverse of a given 3×3 matrix

(c) reducing each matrix element to its remainder modulo 95

(d) adding 32 to each element of the resulting matrix (steps © and (d) are used to map the

numbers to the 32-126 range).

3. Translate the original 3×5 matrix of ASCII character codes back to the original 15-character

message.

6.6 Engineering Example

Encryption

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

6.6 Engineering Example

Encryption

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Homework on Chapter 6 is posted on the website:

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

Homework is due within a week

