Chapter 8
File Input and Output

PEARSON ALWAYS LEARNING

Outline

8.1 Concept: Serial Input and Output (1/O)
8.2 Workspace 1/O

8.3 High-level I/O Functions

8.4 Low-level File I/O

8.5 Engineering Example— Engineering Data

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.1 Concept: Serial Input and
Output

* We refer to the process of reading and writing
data files as Input/Output (1/0O).

* When a program opens a file by name for
reading, it continually requests block of data
from the file stream until the end of the file is
reached.

* As the data is received, the program must
identify the delimiting characters and reformat
the data as represented in the file.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.1 Concept: Serial Input and
Output

* Similarly, when writing data to a file, the
program must serialize the data. To
preserve the organization of the data, the
appropriate delimiting characters must be
inserted into the serial character stream.

 The purpose of the file I/O functions is to
encapsulate them into a single system
function.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.2 Workspace I/O

* MATLAB defines the tools to save your complete
workspace to a file with the save command, and

reload it with the /oad command.

* If you provide a file name, i.e. my_filename,
with the save command, MATLAB will save some

variables or the entire workspace to
my_filename.mat:

>> save mydata.mat a b c*

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.3 High-level I/O Functions

* Most programming languages require the
programmer to write detailed programs to
read and write files.

* Fortunately for MATLAB programmers,
much of this work has been built into
special file readers and writers.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.3 High-level I/O Functions

x =0:1:1;

y = [x; exp(x)];

fid = fopen(S W');
fprintf(fid, Y);
fclose(fid);

The exp.txt file will contain the following values:

0.00 1.00000000
0.10 1.10517092

1.00 2.71828183

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.3 High-level I/O Functions

* Suppose the file we are reading contains
the string
'‘Blackbird singing in the dead of night'

* The following command returns only five
characters of the first field:

C = textscan(fid, '%5s', 1);

C{:}

ans = 'Black’

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.3 High-level I/O Functions

* If we continue reading from the file,
textscan resumes the operation at the
point in the string where you left off:

C = textscan(fid, '%s %s', 1);

* The results are
C{:}

ans = 'bird’
ans = 'singing’

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.4 Low-level File I/O

e Some text files contain data in mixed format that
are not readable by the high-level file reading
function.

 MATLAB provides a set of lower-level /O function
that permit general-purpose text file reading and
writing.

* In general:

The file must be opened to be used by
subsequent functions to identify its data stream.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.4 Low-level File I/O

* We usually refer to this identifies as the “file
handle”. After the file contents have been
manipulated, the file must be closed to
complete the activity.

* To open a file for reading or writing, use:

fh = fopen(<filename>, <purpose>);

<filename> is the name of the file to read/write.

<purpose> specifies the purpose which may be reading: ‘r’, writing
‘W’ (file contents will be ovewritten), or append, ‘a’ (to append new
data).

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.4.2 Reading Text Files

* To read a file, three levels of support are provided:
reading whole lines, parsing into tokens with
delimiters, or parsing into cell arrays.

— To read a whole line use str = fgets(fh) which will return each line as a
string.

— To parse each line into tokens separated by white space delimiters, using
fgetl(...) and the tokenized function [<tk>,<rest>] = strtok(<In>);
where; where <tk> is a string token, <rest> is the remainder of the line,
and <In> is the original string.

— MATLAB can parse a line into a cell array by using ca = textscan(fh,
<format>; where <format> is a format control string.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.4.4 Writing Text Files

* Once a file has been opened, the fprintf(...)
function can be used to write to it. At the
end every file needs to be closed.

oh = fopen(ofn, ‘w’);
fprintf(oh, In);
fclose(oh);

Where oh is the file ID, and In is a line of characters (a string)

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.5 Engineering Example—
Reading Engineering Data File

* Problem:

Consider the problem where it is required to read a
file of measurements. The data file includes
repeated sets of times, dates, and measurements.

* The data file has the following format:

— Number of measurements
Time #1

Date #1

Measurements #1

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.5 Engineering Example—
Reading Engineering DataFile

1 % Define the file name and size of record
Tl= filename='measurements. txt';

3 - measrows=4;

AE meascols=4;

5

f ¥ Open the file

7 - fid=fopen(filenana);

8

g % Read the file headers, find N (one value)
h|= N=fscanf(fid, '%*s ¥*s\nN=%d\r"n',1);

11

12 ¥ Read each set of measurements

15 |= far n=1:N

14

15 % Read the time and date of each record
16 - structin).mtime=fscanf(fid, '%s',1);

17 |= | structin).mdate=fscanf(fid, '%s',1);

18

19 % fscanf fi11s the array in COLUMN ORDER,
20 % =0 transpose the results

2l = structin).meas =fscanf{fid, %', [neasrows, meascols])';
22

23

24 - and

25

26 % Close the file

27 - fclose(fid);

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.5 Engineering Example—
Reading Engineering Data File

== struct({l)

ans =
mtime: '12:00:00°
mdate: '01-Jan-1977"

meas: [4x4 double]

== struct(l).mtime

ans =

12:00:00

== structi{l).mdate

ans =

01-1an-1977

== structi{l).meas

ans =
4,2100 & . 5500 &.7800 & . 5500
9.1500 0.3500 7. 5700 Mah
79200 8.4900 7.4300 7.0600
9. 5900 9.3300 3.9200 0.3100

fe == |

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.5 Engineering Example—
Reading Engineering Data File

* Problem:

Consider the problem where it is required to read
a file of measurements. The data file includes
repeated sets of times, dates, and
measurements.

* Now consider using the EOF (End-Of-File). EOF
IS @ condition in @ computer operating system
where no more data can be read from a data
source. The data source is usually called a file
or stream.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.5 Engineering Example—
Reading Engineering Data File

1 % Define filename and size of records

2 - filename="measurementsl . txt';

3 - measrows=4;

4 - meascols=4;

5

& % Open the file

7- fid=fopen(filename);

8

g ¥ Read the file

= recordn=1;

11 - while ~feof(fid)

12 - struct{recordn).mtime=fscanf(fid, '%s',1);
15]= struct{recordn).mdate=fscanf(fid, '%s',1);
14

15 % fscanf f117s the array in COLUMN ORDER,
1A % so transpose the results

i = struct(recordn).meas =fscanf(fid, '%f', [measrows, meascols])';
18

19 - recordn=recordn+l;

A= and

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.5 Engineering Example—
Reading Engineering Data File

=» struct(l)
ans =
mtime: '12:00:00°
ndate: '01-Jan-1977"
meas: [4x4 double]
== struct(l).meas
ans =
4,2100 £.5500 &.7800 £.5500
9.1500 0.3500 7.5700 MaM

7.9200 8.4900 7.4300 7.0600
9.5500 9.3300 3.59200 0.3100

fi >> |

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Homework on Chapter 8 is posted on the website:

http://www.ee.nmt.edu/~erives/289 F12/EE289.html

Homework is due within a week

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

