
The stack and the stack The stack and the stack
pointerpointer

If you “google” the word stack, one of the definitions you will get is:If you “google” the word stack, one of the definitions you will get is:

A reserved area of memory used to keep track of a program's internal operations, including functions, return addresses, passed parameters, etc. A stack is A reserved area of memory used to keep track of a program's internal operations, including functions, return addresses, passed parameters, etc. A stack is
usually maintained as a "last in, first out" (usually maintained as a "last in, first out" (LIFOLIFO) data structure, so that the last item added to the structure is the first item used.) data structure, so that the last item added to the structure is the first item used.

Sometimes is useful to have a region of memory for temporary storage,Sometimes is useful to have a region of memory for temporary storage,
 which which does not have to be allocated as named variables.does not have to be allocated as named variables.

 When you use subroutines and interrupts it will be essential to have such a storage When you use subroutines and interrupts it will be essential to have such a storage
region.region.

Such region is called a Such region is called a StackStack

The The Stack PointerStack Pointer (SP) register is used to indicate the location of the last item put onto (SP) register is used to indicate the location of the last item put onto
the stack.the stack.

When you PUT something ONTO the stack (When you PUT something ONTO the stack (PUSHPUSH onto the stack), the SP is decremented onto the stack), the SP is decremented
 beforebefore the item is placed on the stack. the item is placed on the stack.

When you take something OFF of the stack (When you take something OFF of the stack (PULLPULL from the stack), the SP is incremented from the stack), the SP is incremented
 after the item is pulled from the stack.after the item is pulled from the stack.

Before you can use a stack you have to initialize the SP to point to one value higher thanBefore you can use a stack you have to initialize the SP to point to one value higher than
 the highest memory location in the stack.the highest memory location in the stack.

For the HC12 use a block of memory from about $3B00 to $3BFF for the stack.For the HC12 use a block of memory from about $3B00 to $3BFF for the stack.

For this region of memory, initialize the stack pointer to For this region of memory, initialize the stack pointer to $3C00$3C00. Use LDS (Load Stack. Use LDS (Load Stack
 Pointer) to initialize the stack pointer.Pointer) to initialize the stack pointer.

The stack pointer is initialized only one time in the program.The stack pointer is initialized only one time in the program.

0x3BFA
0x3BFB
0x3BFC
0x3BFD
0x3BFE
0x3BFF
0x3C00

Memory
used
by MCU
(Debug12
Data)

The stack is an array of memory dedicated to The stack is an array of memory dedicated to
temporary storagetemporary storage

SP points to location last item placed in blockSP points to location last item placed in block

SP SP decreasesdecreases when you put an item on the stack when you put an item on the stack

SP SP increasesincreases when you pull the item from the stack when you pull the item from the stack

For the HC12, use For the HC12, use 0x3c000x3c00 as initial SP as initial SP

STACK:STACK: EQUEQU $3C00$3C00
LDSLDS #STACK#STACK

A B

D

X

Y

SP

PC

CCR

0x3BFA
0x3BFB
0x3BFC
0x3BFD
0x3BFE
0x3BFF
0x3C00

Memory
used
by MCU

0x3BF6
0x3BF7
0x3BF8
0x3BF9

An example of some code which An example of some code which
uses the stackuses the stack

Stack pointer:Stack pointer:

Initialize ONCE before the first use (LDS #STACK)Initialize ONCE before the first use (LDS #STACK)

Points to last used storage locationPoints to last used storage location

Decreases when you put something on stack, and increases when you take something off stackDecreases when you put something on stack, and increases when you take something off stack

STACK:STACK: equequ $3C00$3C00

ldslds #STACK#STACK
ldaaldaa #$2e#$2e
ldxldx #$1254#$1254
pshapsha
pshxpshx
clraclra
ldxldx #$ffff#$ffff

CODE THAT USES A & XCODE THAT USES A & X

pulxpulx
pulapula

0x3BFA
0x3BFB
0x3BFC
0x3BFD
0x3BFE
0x3BFF
0x3C00

Memory
used
by MCU

A

X

SP

An example of some code which An example of some code which
uses the stackuses the stack

SubroutinesSubroutines

A subroutine is a section of code which performs a specific task, usually a task which needs to be executed by different parts of the program.A subroutine is a section of code which performs a specific task, usually a task which needs to be executed by different parts of the program.

Example:Example:

org $1000org $1000 -Math functions, such as square root (sqrt)-Math functions, such as square root (sqrt)

 :: Because a subroutine can be called from different places in a program, you cannot getBecause a subroutine can be called from different places in a program, you cannot get
 :: out of a subroutine with an instruction such as out of a subroutine with an instruction such as
call sqrtcall sqrt
 :: ???? jmp labeljmp label
 ::
call sqrtcall sqrt Because you would need to jump to different places depending upon which section ofBecause you would need to jump to different places depending upon which section of
 :: the code called the subroutine. the code called the subroutine.
 ::
swiswi When you want to call the subroutine your code has to save the address where When you want to call the subroutine your code has to save the address where thethe

subroutine should return tosubroutine should return to. It does this by saving the return address on the . It does this by saving the return address on the stackstack..
sqrt:sqrt: compute square rootcompute square root

 :: - This is done automatically for you when you get to the subroutine by- This is done automatically for you when you get to the subroutine by
 :: using using JSRJSR (Jump to Subroutine) or BSR (Branch to Subroutine) (Jump to Subroutine) or BSR (Branch to Subroutine)
jmp labeljmp label instruction. This instruction pushes the address of the instruction instruction. This instruction pushes the address of the instruction

 following the JSR (BSR) instruction on the stackfollowing the JSR (BSR) instruction on the stack

After the subroutine is done executing its code, it needs to After the subroutine is done executing its code, it needs to return to the address saved return to the address saved
on the on the stackstack..

- This is done automatically when you return from the subroutine by- This is done automatically when you return from the subroutine by
 using RTS (Return from Subroutine) instruction. This instruction pullsusing RTS (Return from Subroutine) instruction. This instruction pulls
 the return address off the stack and loads it into the PC.the return address off the stack and loads it into the PC.

SubroutinesSubroutines

Caution:Caution: The subroutine will probably need to use some HC12 registers to do its work. However, the calling code may be using its registers form some The subroutine will probably need to use some HC12 registers to do its work. However, the calling code may be using its registers form some
reason – the calling code may not work correctly if the subroutine changes the values of the HC12 registers.reason – the calling code may not work correctly if the subroutine changes the values of the HC12 registers.

To avoid this problem, the subroutine should save the HC12 registers before it uses them, and restore the HC12 registers after it is done with them.To avoid this problem, the subroutine should save the HC12 registers before it uses them, and restore the HC12 registers after it is done with them.

Example of a subroutine to delay for certain Example of a subroutine to delay for certain
amount of timeamount of time

; Subroutine to wait for 100 ms; Subroutine to wait for 100 ms

Delay:Delay: ldaaldaa #250#250
Loop2:Loop2: ldxldx #800#800
Loop1:Loop1: dexdex

bnebne Loop1Loop1
decadeca
bnebne Loop2Loop2
rtsrts

What is the problem with this subroutine?What is the problem with this subroutine?

It changes the values of the registers that are most frequently used: A and XIt changes the values of the registers that are most frequently used: A and X

How can we solve this problem?How can we solve this problem?

Example of a subroutine to delay for certain Example of a subroutine to delay for certain
amount of timeamount of time

To solve, save the values of A and X on the stack before using them, and restore them before returning.To solve, save the values of A and X on the stack before using them, and restore them before returning.

; Subroutine to wait for 100 ms; Subroutine to wait for 100 ms

Delay:Delay: pshapsha
pshxpshx
ldaaldaa #250#250

Loop2:Loop2: ldxldx #800#800
Loop1:Loop1: dexdex

bnebne Loop1Loop1
decadeca
bnebne Loop2Loop2
pulxpulx ; restore registers; restore registers
pulapula
rtsrts

A sample programA sample program
; Program to make binary counter on LEDS; Program to make binary counter on LEDS
; The program uses a subroutine to insert a delay between counts; The program uses a subroutine to insert a delay between counts

prog:prog: equequ $1000$1000
STACK:STACK: equequ $3C00$3C00
PORTA:PORTA: equequ $0000$0000
PORTB:PORTB: equequ $0001$0001
DDRA:DDRA: equequ $0002$0002
DDRB:DDRB: equequ $0003$0003

orgorg progprog
ldslds #STACK#STACK ; initialize stack; initialize stack
ldaaldaa #$ff#$ff ; put all 1s into DDRA; put all 1s into DDRA
staastaa DDRADDRA ; to make PORTA output; to make PORTA output
clrclr PORTAPORTA ; put $00 into PORTA; put $00 into PORTA

loop:loop: jsrjsr delaydelay ; wait a bit; wait a bit
incinc PORTAPORTA ; add 1 to PORTA; add 1 to PORTA
brabra looploop ; repeat forever; repeat forever

; Subroutine to wait for 100 ms; Subroutine to wait for 100 ms

delay:delay: pshapsha
pshxpshx
ldaaldaa #250#250

loop2:loop2: ldxldx #800#800
loop1:loop1: dexdex

bnebne loop1loop1
decadeca
bnebne loop2loop2
pulxpulx
pulapula
rtsrts

JSR and BSR place return address on stackJSR and BSR place return address on stack
RTS returns to instruction after JSR or BSRRTS returns to instruction after JSR or BSR

STACK:STACK: equequ $3C00$3C00
orgorg $1000$1000

1000 CF 3C 001000 CF 3C 00 ldslds #STACK#STACK
1003 16 10 071003 16 10 07 jsrjsr MY_SUBMY_SUB
1006 7F1006 7F swiswi
1007 CE 12 341007 CE 12 34 MY_SUB:MY_SUB: ldxldx #$1234#$1234
100A 3D100A 3D rtsrts

A B

D

X

Y

SP

PC

CCR

0x3BFA
0x3BFB
0x3BFC
0x3BFD
0x3BFE
0x3BFF
0x3C00

Memory
used
by MCU

0x3BF6
0x3BF7
0x3BF8
0x3BF9

Another example using a subroutineAnother example using a subroutine
Using a subroutine to wait for an event to occur then take actionUsing a subroutine to wait for an event to occur then take action

Wait until bit 7 of address $00CC is set.Wait until bit 7 of address $00CC is set.

Write the value of ACCA to address $00CFWrite the value of ACCA to address $00CF

; This routine waits until the HC12 serial port is ready, then send a byte of data to the serial port; This routine waits until the HC12 serial port is ready, then send a byte of data to the serial port

putchar:putchar: brclrbrclr $00CC,#$80,putchar$00CC,#$80,putchar ; Data Terminal Equip. ready; Data Terminal Equip. ready
staastaa $00CF$00CF ; Send char; Send char
rtsrts

; Program to send the word “hello” to the HC12 serial port; Program to send the word “hello” to the HC12 serial port

ldxldx #str#str
loop:loop: ldaaldaa 1,x+1,x+

beqbeq donedone
jsrjsr putcharputchar
brabra looploop

done:done: swiswi

str:str: fccfcc “hello”“hello” ; form constant character; form constant character
dc.bdc.b $0a,$0d,0$0a,$0d,0 ; CR-LF; CR-LF

Another example using a subroutineAnother example using a subroutine

A complete program to write to the screenA complete program to write to the screen

prog:prog: equequ $1000$1000
data:data: equequ $2000$2000
stack:stack: equequ $3c00$3c00

orgorg progprog
ldslds #stack#stack ; initialize stack; initialize stack
ldxldx #str#str ; load pointer to “hello”; load pointer to “hello”

loop:loop: ldaaldaa 1,x+1,x+
beqbeq donedone ; is done then end program; is done then end program
jsrjsr putcharputchar ; write character to screen; write character to screen
brabra looploop ; branch to read next ; branch to read next

charactercharacter
done:done: swiswi

putchar:putchar: brclrbrclr $00CC,$80,putchar$00CC,$80,putchar ; check is serial port is ; check is serial port is
readyready

staastaa $00CF$00CF ; and send; and send
rtsrts

orgorg datadata
str:str: fccfcc “hello”“hello” ; form constant character; form constant character

dc.bdc.b $0a,$0d,0$0a,$0d,0 ; CR-LF; CR-LF

JSR and BSR place return address on stackJSR and BSR place return address on stack
RTS returns to instruction after JSR or BSRRTS returns to instruction after JSR or BSR

Using DIP switches to get data into the HC12Using DIP switches to get data into the HC12

DIP switches make or break a connections (usually to ground)DIP switches make or break a connections (usually to ground)

5V

Using DIP switches to get data into the HC12Using DIP switches to get data into the HC12

To use DIP switches, connect one end of each switch to a resistorTo use DIP switches, connect one end of each switch to a resistor

Connect the other end of the resistor to +5VConnect the other end of the resistor to +5V

Connect the junction of the DIP switch and the resistor to an input port on the HC12Connect the junction of the DIP switch and the resistor to an input port on the HC12

When the switch is open, the input port sees a logic 1 (+5V)When the switch is open, the input port sees a logic 1 (+5V)

When the switch is closed, the input sees a logic 0 (0V)When the switch is closed, the input sees a logic 0 (0V)

5V

5V

PB0
PB1

Looking at the state of a few input pinsLooking at the state of a few input pins

Want to look for a particular pattern on 4 input pinsWant to look for a particular pattern on 4 input pins

-For example want to do something if pattern on -For example want to do something if pattern on PB3-PB0 is 0110PB3-PB0 is 0110

Don’t know or care what are on the other 4 pins (PB7-PB4)Don’t know or care what are on the other 4 pins (PB7-PB4)

Here is the wrong way to do it:Here is the wrong way to do it:

ldaaldaa PORTBPORTB
cmpacmpa #b0110#b0110
beqbeq tasktask

If PB7-PB4 are anything other than 0000, you will not execute the task.If PB7-PB4 are anything other than 0000, you will not execute the task.

You need to mask out the Don’t Care bits before checking for the pattern on the bits you are interested inYou need to mask out the Don’t Care bits before checking for the pattern on the bits you are interested in

ldaaldaa PORTBPORTB
andaaandaa #b00001111#b00001111
cmpacmpa #b00000110#b00000110
beqbeq tasktask

Now, whatever pattern appears on PB7-4 is ignoredNow, whatever pattern appears on PB7-4 is ignored

Using an HC12 output port to control an LEDUsing an HC12 output port to control an LED

Connect an output port from the HC12 to an LED.Connect an output port from the HC12 to an LED.

Using an output port to control an LEDUsing an output port to control an LED

PA0

Resistor, LED, and
Ground connected internally inside
breadboard

When a current flows
Through an LED, it emits light

Making a pattern on a 7-segement LEDMaking a pattern on a 7-segement LED

Want to make a particular pattern on a 7-segmen LED.Want to make a particular pattern on a 7-segmen LED.

Determine a number (hex or binary) that will generate each element of the patternDetermine a number (hex or binary) that will generate each element of the pattern

-For example, to display a 0, turn on segments a, b, c, d, e, and f, or bits 0, 1, 2, 3, 4, and 5 of PTH. The binary pattern is 00111111,-For example, to display a 0, turn on segments a, b, c, d, e, and f, or bits 0, 1, 2, 3, 4, and 5 of PTH. The binary pattern is 00111111,
 or $3for $3f

-To display 0, 2, 4, 6, 8, the hex numbers are $3f, $5b, $66, $7d, $7f.-To display 0, 2, 4, 6, 8, the hex numbers are $3f, $5b, $66, $7d, $7f.

Put the numbers in a tablePut the numbers in a table

Go through the table one by one to display the patternGo through the table one by one to display the pattern

When you get to the last element repeat the loopWhen you get to the last element repeat the loop

 a

 f b
 g

 e c

 d

Flow chart to display the patterns on a 7-segement Flow chart to display the patterns on a 7-segement
LEDLED

0x3f
0x5b
0x66
0x7d
0x7f

table X

table_end

Start

Port H
 Output

Point to
First entry

Get entry

Output to
PORT H

Inc pointer X < end

L1:

L2:

ldaa #$ff
staa DDRH

ldx #table

ldaa 0,x

staa PORTH

inx
cpx #end_table
bls L2
bra L1

Program to display the patterns on a 7-segement Program to display the patterns on a 7-segement
LEDLED

; Program to display patterns

prog: equ $1000 delay: psha
data: equ $2000 pshx
stack: equ $3C00 ldaa #250
PTH: equ $0260 Loop2: ldx #8000
DDRH: equ $0262 Loop1: dex

org prog bne Loop1
lds #stack deca
ldaa #$ff bne Loop2
staa DDRH pulx

L1: ldx #table pula
L2: ldaa 1,x+ rts

staa PTH
jsr delay
cpx #table_end org data
bls L2 table: dc.b $3f
bra L1 dc.b $5b

dc.b $66
dc.b $7d

table_end: dc.b $7f

