
EE 308 Spring 2014

Lab 3 – Part 3
HCS12 Timer Interrupt Capture and Output Compare

Introduction and Objectives

Last week you wrote programs using the MC9S12 Timer Overflow Interrupt and Real
Time Interrupt. This week you will work with the timer Input Capture and Timer Output
Compare functions. To demonstrate their usage you will design a program to measure
your reaction time and display it on the 7-seg display.

1. Prelab

For the prelab write the interrupt service routines TIC0_ISR and TIC2_ISR.

2. The Lab

1. Start a new project. This time select ”float is IEEE32”.

2. Start with the following program, which is just a do-nothing infinite loop:

#include ”derivative.h”
#include ”vectors12.h”
#define TRUE 1
main ()
{

whi l e (TRUE)
{

asm(wai);
}

}

3. Add to your program a global 16-bit variable called reaction_time. Add the following
Real Time Interrupt ISR, and add code to the main part of the program to generate a real
time interrupt every 2ms. In your main loop, set reaction_time to a known value (e.g.,
0x1234), and verify that this is correctly displayed on the seven segment LEDs.

Program 1 Program required to display characters on seven segment LEDs.

interrupt void RTI isr (void)
{

EE 308 Spring 2014

static unsigned char digit = 0;
const char c2seven_seg [] = { 0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,

0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,
 0x58, 0x5e, 0x79, 0x71};

switch (digit) {
case 0 : PTP = 0x0E;

PORTB = c2sevenseg [(reaction_time >>12)&0x0F];
break;

case 1 : PTP = 0x0D;
PORTB = c2seve_seg [(reaction_time >>8)&0x0F];
break;

case 2 : PTP = 0x0B;
PORTB = c2seven_seg [(reaction_time >>4)&0x0F];
break;

case 0 : PTP = 0x07;
PORTB = c2seven_seg [(reaction_time)&0x0F];
break;

}
digit = (digit + 1) % 4;
CRGFLG = 0x80;

}

4. Now measure your reaction time and display it on the 7-seg display. You will set up
the hardware so that when Key 1 (of the 4 x 4 keypad on the lower right of the Dragon12
board) is pressed, the LED labeled RELAY (just above the 4x4 keypad) will turn on, and
the time of the Key 1 press will be captured. When SW2 of the push-button switches
(below the DIP switches on the lower left side of the Dragon12 board) is pushed, the time
of that push will be captured. You will have a lab partner press Key 1 to turn on the
RELAY LED. When you see the RELAY LED turn on, you will press SW2 as quickly
as possible. By subtracting the two times (SW2 press minus Key 1 press), you can
measure your reaction time, then display it (in milliseconds) on the seven-segment LEDs.
After completing this once, pressing SW5 will reset the system so you can measure your
reaction time again. To set up the hardware, you need to make a Key 1 press generate a
falling edge on PT0 and make an SW2 press generate a falling edge on PT2. You will
use interrupts to capture the times of the falling edges of PT0 and PT2. After the falling
edge of PT2, you will display the time on the seven-segment LEDs. After pushing SW5
(which is connected to PTH0) you will start the process over again.

(a) Run a wire from PA4 to PT0. Connect a 10 K resistor from PT0 to VCC. In
your program, make Bit 0 of Port A an output port, and write a 0 to it. Make Bit 4
of Port A an input port. Make Bit 0 of Port T an input port. When this is done,

EE 308 Spring 2014

PT0 will be high when Key 1 is not pressed. When Key 1 is pressed on the
keypad, PT0 will go low.

(b) Make sure all DIP switches are on. Run a wire from PH3 to PT2. In your
program make Bit 3 of Port H an input port. Make Bit 2 of Port T an input port.

When this is done, PT2 will be high when SW2 is not pressed. When SW2 is
pressed, PT2 will go low.

(c) In the setup part of your program, make Bit 2 of Port E an output. Bit 2 of
Port E controls the RELAY LED. This will allow Bit 2 of Port E to turn on and
off the LED next to the relay. Write a 0 to PE2 to turn off the LED.

(d) Set up PT0 as input capture, to capture the time of the falling edge. In the
setup part of your program, clear the TC0 flag and enable the PT0 interrupt. Write
an ISR (called something like TIC0_ISR) to capture the time of the falling edge
on PT0, and save the value in a global variable (time_1). In the ISR, turn on the
RELAY LED, disable the PT0 interrupt, and enable the PT2 interrupt. Be sure to
clear both the TC0 and TC2 flags in the ISR.

(e) Set up PT2 as input capture, to capture the time of the falling edge. Clear the
TC2 flag and disable the PT2 interrupt. Write an ISR (called something like
TIC2_ISR) to capture the time of the falling edge on PT2, and save the value in a
global variable (time_2), and set the global variable done to 1. In the ISR, turn
off the RELAY LED, and disable the PT2 interrupt. Be sure to clear the TC2 flag
in the ISR.

(f) In the setup part of your program, set the global variable done to 0. Also,
enable the timer subsystem. Set the timer prescaler so the overflow rate is greater
than 100 ms.

(g) When your lab partner presses Key 1, the RELAY LED will turn on. Press
SW2 as quickly as you can. In the infinite loop part of your program, wait until
SW2 is pressed by monitoring the global variable done.

After your program captures the time of the PT2 falling edge, calculate the time
between the edge on PT2 (captured as time_2 in the TIC2_ISR) and the edge
on PT0 (captured as time_1 in the TIC0_ISR). Convert this from clock cycles
to milliseconds, and then convert to BCD to display on the seven-segment LEDs.
(How to do this is discussed below.)

EE 308 Spring 2014

To reset the system, press SW5, which makes PH0 go low. In your program,
when PH0 goes low, clear the TC0 and TC2 flags, and re-enable the TC0
interrupt. Also, set the global variables reaction_time and done to 0.

You can let the MC9S12 convert clock cycles to time, and display the time between two
edges on the seven-segment LEDs:

• Convert the number of timer cycles from PT0 edge to PT2 edge to a floating
point number. Divide it by (24,000,000/prescaler).

• Convert the time in milliseconds back to the fixed-point number. Convert the
hexadecimal fixed-point number to a BCD number so the time in decimal
milliseconds will be displayed.

• Here is some code which will convert the time difference in timer clock cycles
to BCD milliseconds:

#define clock_freq 24000000.0
#define prescaler ((float) (1 << (TSCR2&0x07)))
unsigned int t_first , t_second, dt ;
unsigned int value ; // Value to display on seven−segment LEDs
. . .

dt = ((float) (t_second – t_first))*prescaler) / clockfreq*1000.0;
value = hex2bcd (dt) ;

. . .
unsigned int hex2bcd (unsigned int x)
{

unsigned int d3 , d2 , d1 , d0 ;
if (x > 9999) return 0xFFFF;
d3 = x /1000;
x = x−d3*1000;
d2 = x /100;
x = x−d2*100;
d1 = x /10;
x = x−d1*10;
d0 = x;
return d3*16*16*16 + d2*16*16 + d1*16 + d0;

}

5. Write an output compare ISR to generate a 10 Hz square wave on PT4. Use a logic
probe to verify that it works.

