-  More on Programming the 9S12 in C
- Huang Sections 5.2 through 5.4
- Introduction to the 9512 Hardware Subsystems
- Huang Sections 8.2-8.6
- ECT 16B8C Block User Guide
« A summary of 9512 hardware subsystems
« Introduction to the 9S12 Timer subsystem
o The 9S12 has a 16-bit free-running counter to determine the
time and event happens, and to make an event happen at a
particular time
o The counter is normally clocked with an 8 MHz clock
o The Timer Overflow (TOF) bit -- when the timer rolls over
from 0x0000 to OxFFFF it sets a flip-flop to show that this
has happened.
o The Timer Prescaler (PR2:0) bits of Timer Interrupt Mask 2
(TMSK2) register: Allows you to change the frequency of the
clock driving the 16-bit counter.

9S12 Built-In Hardware
* The 9S12 has a number of useful pieces of hardware built into the chip.

* Different versions of the 9S12 have slightly different pieces of hardware.
Information about the hardware modules is found in data sheet for the
modules.

* We are using the MC9S12DT256 chip (often referred to as the 9S12 chip).

» Here is some of the hardware available on the MC9S12DT256:

— General Purpose Input/Output (GPIO) Pins: These pins can be used to read the logic
level on an 9S12 pin (input) or write a logic level to an HC12 pin (output). We have
already seen examples of this — PORTA and PORTB. Each GPIO pin has an associated
bit in a data direction register which you use to tell the 9512 if you want to use the GPIO
pin as input or output. (For example, DDRA is the data direction register for PORTA..)



— Timer-Counter Pins: The 9S12 is often used to time or count events. For example, to
use the 9S12 in a speedometer circuit you need to determine the time it takes for a wheel
to make one revolution.

To keep track of the number of people passing through a turnstile you need to count the
number of times the turnstile is used.

To control the ignition system of an automobile you need to make a particular spark plug
fire at a particular time. The 9S12 has hardware built in to do these tasks.

* For information, see the ECT 16B8C Block User Guide.

— Pulse Width Modulation (PWM) Pins: To make a motor turn at a particular speed
you need to send it a pulse width modulated signal. This is a signal at a particular
frequency (which differs for different motors), which is high for part of the period and
low for the rest of the period. To have the motor turn slowly, the signal might be high for
10% of the time and low for 90% of the time. To have the motor turn fast, the signal
might be high for 90% of the time and low for 10% of the time.

* For information, see the PWM 8B8C Block User Guide.

— Serial Interfaces: It is often convenient to talk to other digital devices (such as another
computer) over a serial interface. When you connect your 9S12 to the PC in the lab, the
HC12 talks to the PC over a serial interface. The 9S12 has two serial interfaces: an
asynchronous serial interface (called the Serial Communications Interface, or SCI) and a
synchronous serial interface (called the Serial Peripheral Interface, or SPI).

* For informaiton on the SCI, see the 9S12 Serial Communications Interface (SCI)
Block User Guide.

* For information on the SPI, see the SPI Block User Guide.

— Analog-to-Digital Converter (ADC): Sometimes it is useful to convert a voltage to a
digital number for use by the 9S12. For example, a temperature sensor may put out a
voltage proportional to the temperature. By converting the voltage to a digital number,
you can use the 9S12 to determine the temperature.

* For information, see the ATD 10B8C Block User Guide.

* Most of the 9S12 pins serve dual purposes. For example, PORTT is used for the
timer/counter functions. If you do not need to use PORTT for timer/counter functions,
you can use the pins of PORTT for GPIO. There are registers which allow you to set up
the PORTT pins to use as GPIO, or to use as timer/counter functions. (These are called
the Timer Control Registers).

Introduction to the 9512 Timer Subsystem
* The 9S12 has a 16-bit counter that normally runs with an 24 MHz clock.

» Complete information on the 9512 timer subsystem can be found in the ECT 16B8C
Block User Guide. ECT stands for Enhanced Capture Timer.



* When you reset the 9S12, the clock to the timer subsystem is initially turned off to save
power.

— To turn on the clock you need to write a 1 to Bit 7 of register TSCR1

(Timer System Control Register 1) at address 0x0046.

* The clock starts at 0x0000, counts up (0x0001, 0x0002, etc.) until it gets to OXFFFF. It
rolls over from OxFFFF to 0x0000, and continues counting forever (until you turn the
counter off or reset the 9S12).

* It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the counter to count from
0x0000 to OXFFFF and roll over to 0x0000.

* To determine the time an event happens, you can read the value of the clock (by reading
the 16-bit TCNT (Timer Count Register) at address 0x0044.

ECT_18BSC Block User Gulds VI1.03

1.4 Block Diagram

Channel 0
-
1E-bit Counter oce
Channel 1
Ingut caphure
ekl coule o 16t Modhulus Courte DUpICoTpaE _jel
Channgl 2
g e s U
Timer channel 0 channel 3
T Ingut caphure o3
Duipul compare I -
Registers Channel 4
s
Channgl 5
Input caphure ors
e

Channgl &

[E QT CApIE | ace
Puisa accumulator & Oulput compare fef =
PA Input

Channgl 7
mternapt
PS5 overnow

1E-Bit Irgut caplure = ocT
rrarupt Pulse apcumulator B Ouputcompare =

Figure 1-1 Timer Block Diagram

Bus Clock ———= =

oc

oC4

Timer channel 7
IntesTupt
F& overflow

IntesTups

ERENEANANEN




Timer inside the 68HC12:

When you enable timer (by writing a 1 to bit 7 of TSCR), you connect an 24—MHz
oscillator to a 16—bit counter.

You can read the counter at address TCNT.

The counter will start at 0, will count to 0XFFFF, then roll over to 0x0000. It will take
2.7307 ms for this to happen.

16-Bit Counter
TEN TCNT (addr 0x44)
(Bit T of TSCR1, addr 0x48)

24 MHz

To enable timer on HC12, set Bit 7 of register TCSR:

bset  TSCRI1,#$80 TSCR1 = TSCRI1 | 0x80;

ECT_18B4C Block Usar Gulde WW1.03

3.3.6 TSCR1 — Timer System Control Register 1
Faglster offeet: §_06

BITT B 5 & 3 2 1 BITD
t | TEM | TEWAI | TEFRZ | e I : I ° I £ I
.
RESET: o b o a o b o o

= Unimplemenizd or Reserved
Figure 3-8 Timer System Control Register 1 (TSCR1)

Read orwrite amytime.

TEN — Timer Enable
1 = Diisables the main timer, including the eounter. Can be wsad for educing power consumpgion.
1 = Allows the timer to function normally.

If for any mason the timer is not adive, the e is no +64 clock far the pals scoumulator since the +64
iz gemeraed by the timer prescalker.

TIWAT — Timer Moduba Stops Whils in Wait
= Allows the timer madule to continue nunning during wait
1= Disshles the timer module when the MCU is in the wait mode. Timer mtermupts cannot be ussd
to et the MCTT ont of wait.

TEWAT also affects pulss accumulators and modulus down countars,

TAFRZ — Timer and Modulus Countar Stop Whilk in Feeze Moda
= Allows the timer and modulus counter to continue mnning whils in freeze moda.
1 =Disahlas the timer and madulus counter whenever the ML is in freeza mode. This is usaful
for emulation.

TSFRE does not stop the pals aconmulaor.

TFFCA — Timer Fast Flag Clear All

0 = Allows the timer flag clearing to function normally.

1 =For TELGL{S0E), a read from an input captuse or awrike to the output compam channel
($10-% LF) causes the core sponding channel flag, CnF, to be cleared. For TFLGZ ($0F), any
access to the TONT register (304, 805) clears the TOF flag. Any access to the PACN3 and
PACNZ mgisters ($22, $23) cloars the PAOVF and PATF flags in the PAFLG mgister (£21).
Any aceess to the PACNI and PACND regisers (524, 825) clears the FROVE flag in the
PBFLG mregiser($31). This has the advantage of eliminating softwam overhesd in & separaie

clear squence. Extra care is required to avoid accidental flag clearing due to unintendad
ACCRE5A 5.

22



3.3.5 TCNT — Timer Count Register
Regleter oftset: §_04-5 05

BIT1S 14 13 12 " 12 k. & 7 E 5 s 3 2 1 Bma

R tont | %ent | foet | fomit | et | ket | fend | fnt | tont | fent | dent | toed | dent | dent | ot | dend
W 15 14 13 12 1 i 5 & T B s 2 3 2 1 L]
RESET: o L] a o L] a o [= o [ a o [ a o L]

Figure 3-53 Timer Count Register (TCHNT)

The 16-hit main timer is an op countear

A full access for the counter @ gister should take place in one clock cycle. A saparate readfvrite for high
boyie and low byte will give a diffeent @sult than scoessing them a5 & word

Read anytime
Write has no meaning or affect in the normal maode; only writable in special modes est_moda = 1)

The pariod of the first count after 2 write tothe TCNT mgisters may be a different size bacauss the wrik
is not synchronizmed with the prescaler clock

* To put in a delay of 2.7307 ms, you could wait from one reading of 0x0000 to the next
reading of 0x0000.

* Problem: You cannot read the TCNT register quickly enough to make sure you will see
the 0x0000.

To put in a delay for 2.7307 ms, could watch timer until

TCNT == 0x0000:

bset TSCR1,#$80 TSCR1 =TSCRI | 0x80;
I1: Idd TCNT while (TCNT != 0x0000) ;
bne 11

Problem: You might see OxFFFF and 0x0001, and miss 0x0000

16-Bit Counter
TONT (addr 0xd4)

24 MHz
TEN
(Bit 7 of TSCR1, addr OxdE)




* Solution: The 9S12 has built-in hardware with will set a flip-flop every time the counter
rolls over from OxFFFF to 0x0000.

* To wait for 2.7307 ms, just wait until the flip-flop is set, then clear the flip-flop, and
wait until the next time the flip-flop is set.

* You can find the state of the flip-flop by looking at bit 7 (the Timer Overflow Flag
(TOF) bit) of the Timer Flag Register 2 (TFLG2) register at address 0x004F.

* You can clear the flip-flop by writing a 1 to the TOF bit of TFLG2.

Solution: When timer overflows, latch a 1 into a flip—flop. Now when timer overflows
(goes from OXxFFFF to 0x0000), Bit 7 of TFLG2 register is set to one. Can clear register
by writing a 1 to Bit 7 of TFLG register.

(Note: Bit 7 of TFLG2 for a read is different than
Bit 7 of TFLG2 for a write)

TIMER OVERFLOW INTERRUFT

WET

TOF
I—n [ )

(3607 of TRLGS, Sk moaF)

B iomer v rilow
TEAT dadr )

4 MET
Tew
(%07 of TAS I, s ooy

TaF

el
V59 70 TRLES, By adF

bset TSCR1,#$80  ; Enable timer TSCR1 =TSCRI1 | 0x80; //Enable timer
11: brelr TFLG2,#$80,11 ; Wait until Bit 7 of TFLG2 is set while ((TFLG2 & 0x80) == 0) ; // Wait for TOF

ldaa #$80

program ... program ...

staa TFGL2 ; Clear TOF flag TFLG2 = 0x80; // Clear TOF



Elock Usar Gulde — S$12ECT1SESCV1D V.03

3.3.13 TFLG2 — Main Timer Interrupt Flag 2

Ragleter offast §_0F

BITY 8 H 4 3 2 1 EITD
S DR M I R R R R
"' | | | | I | I |
RESET: b a o o o o a a

= Unimplemented or Resened
Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicarzs when interrupe conditions have oceured. To claar & bit in the flag registar, writs the bit
o one.

Raad anytime. Write used in claring mechanism (set bits cause cormesponding bits to be cleard).
Any acgess to TONT will clear TFLG2 register if the TEFCA bit in TECR e gistar is set.

TOF — Timer Ovarflow Flag

Eetwhen 1é-bit free-nanning time r overflows from $FFFF to £0000. This bit is cleared automartically
by a wrile to the TFLG2 mgister with bit 7 set. (See also TCRE control bit explanation. )

* Another problem: Sometimes you may want to delay longer than 2.7307 ms, or time an
event which takes longer than 2.7307 ms. This is hard to do if the counter rolls over
every 2.7307 ms.

* Solution: The 9S12 allows you to slow down the clock which drives the counter.

* You can slow down the clock by dividing the 24 MHz clock by 2, 4, 8, 16, 32, 64 or
128.

* You do this by writing to the prescaler bits (PR2:0) of the Timer System Control
Register 2 (TSCR2) Register at address 0x004D.

2.7307 ms will be too short if you want to see lights flash. You can slow down clock by
dividing it before you send it to the 16—bit counter. By setting prescaler bits
PR2,PR1,PRO of TSCR2 you can slow down the clock:



PR
000
001
010
011
100
101
110
111

Divide
1

2

4

8

16

32

64

128

Freq Overflow Rate
24 MHz 2.7307 ms

12 MHz 5.4613 ms

6 MHz 10.9227 ms

3 MHz 21.8453 ms

1.5 MHz 43.6907 ms
0.75 MHz 87.3813 ms
0.37S MHz 174.7627 ms
0.1875 MHz 349.5253 ms

To set up timer so it will overflow every 87.3813 ms:

bset TSCR1,#$80

staa TSCR2
TSCR1 =TSCRI1 | 0x80;

24 Mz

TSCR1 =TSCRI1 | 0x80;
TSCR2 = 0x05;

TIMER CVERFLOW INTERRUPT

I_ ToF
o a ——

Raad
(217 of TRLGZ, addr 1ndF)

Pz it

13- Countar Dvartiow

TEN
CBR T of TELRTL, addr ndd)

TOHT daddr tedfy

FELO]

(Efs 2-0 of TSCRZ addr i 40) T

Wit
(27 of TRLGZ, addr hedF)



3.3.11 TSCR2 — Timer System Control Register 2
Register offset: §_0D

&7 3 5 4 3 2 1 BiTO
R N LI N B PRz PRI PRD
w | [ [ [

RESET: 7 T § 7 T § 7 T

= Urimplementad or Reserved
Figure 3-11 Timer System Control Register 2 (TSCR2)

Read or write anytime.

TOI— Timer Overflow Interrupt Enable
0 = Intermupt inhibited
| = Hardware interrupt requested when TOF flag set

TCRE — Timer Counter Reset Enable

This bit allows the timer counter to be reset by a sucoessful output compare 7 event. This mode of
operation is similar o an up-counting modulus counter.

0 =Counker rset inhibited and counter free mns

| = Counker rset by a successful output compare 7
If TCT = 50000 and TCRE= 1, TCNT will stay at 30000 continuously, If TCT = $FFFF and TCRE =
1, TOF will never be set when TCNT is reset from SFFFF 1o $0000,

PR2, PRI, PRO— Timer Prescaler Select

(W) moTamoLs 5



ECT_16B&C Block User Guide V0103

These three bits specify the number of +2 stages that are to be inserned berween the bus clock and the
Main Lmer counter.

Table 3-4 Prescaler Selection

PR2 PRI PRI Prescale Factor
[1] [x] a 1
[1] [x] 1 2
[1] 1 a 4
[1] 1 1 8
i [x] a 16
[x] 1 32
1 [1] ]
1 1 123

The newly selected prescale factor will not take effect until the next synchronized edge where all
prescale counter stages equal zero,

Setting and Clearing Bits in C

* To put a specific number into a memory location or register (e.g., to put 0x55 into
PORTA):

movb #$55,PORTA PORTA = 0x55;
* To set a particular bit of a register (e.g., set Bit 4 of PORTA) while leaving the other

bits unchanged do a bitwise OR of the register and a mask which has a 1 in the bit(s) you
want to set, and a 0 in the other bits:

bset PORTA,#$10 PORTA =PORTA | 0x10;
* To clear a particular bit of a register (e.g., clear Bit 5 of PORTA) while leaving the

other bits unchanged do a bitwise AND of the register and a mask which has a 0 in the
bit(s) you want to clear, and a 1 in the other bits. You can construct this mask by



complementing a mask which has a 1 in the bit(s) you want to set, and a 0 in the other
bits:

belr PORTA,#$20 PORTA = PORTA & 0xDF;
PORTA = PORTA & ~0x20;

* To change several bits of a register, AND the register with 1’s in the bits you want to
leave unchanged, then OR the result with 1’s in the bits you want to set, and 0’s in the
bits you want to clear. For example, to set bits 2 and 0, and clear bit 1 (write 101 to bits
2-0) of TSCR2, do the following:

ldaa TSCR2 TSCR2 = (TSCR2 & 0xF8) | 0x05;
anda OxF8

ora 0x05

staa TSCR2



