- The 9S12 Pulse Width Modulation System
- Huang Sections 8.10 and 8.11
- PWM\_8B8C Block User Guide
  - What is Pulse Width Modulation
  - The 9S12 Pulse Width Modulation system
  - Registers used by the PWM system
  - How to set the period for PWM Channel 0
  - How to set the clock for PWM Channel 0
  - Interdependence of clocks for Channels 0 and 1
  - PWM Channels 2 and 3
  - Using the 9S12 PWM
  - A program to use the 9S12 PWM

| PWME7         PWME6         PWME5         PWME4         PWME3         PWME2         PWME1         PWME0         0x00A0 F | PWME |
|--------------------------------------------------------------------------------------------------------------------------|------|
|--------------------------------------------------------------------------------------------------------------------------|------|

Set PWMEn = 1 to enable PWM on Channel n If PWMEn = 0, Port P bit n can be used for general purpose I/O

|       |       |       |       |       |       |       |       | _             |
|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| PPOL7 | PPOL6 | PPOL5 | PPOL4 | PPOL3 | PPOL2 | PPOL1 | PPOL0 | 0x00A1 PWMPOL |

PPOLn – Choose polarity  $1 \Rightarrow$  high polarity  $0 \Rightarrow$  low polarity We will use high polarity only. PWMPOL = 0xFF; With high polarity, duty cycle is amount of time output is high

|       |       |       |       |       |       |       |       | _             |
|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| PCLK7 | PCLK6 | PCLK5 | PCLK4 | PCLK3 | PCLK2 | PCLK1 | PCLK0 | 0x00A2 PWMCLK |

PCLKn – Choose clock source for Channel n CH5, CH4, CH1, CH0 can use either A (0) or SA (1) CH7, CH6, CH3, CH2 can use either B (0) or SB (1)

SA=A/(2 X PWMSCLA) SB=B/(2 x PWMSCLB)

| 0 | PCKB2 | PCKB1 | PCKB0 | 0 | PCKA2 | PCKA1 | PCKA0 | 0x00A3   |
|---|-------|-------|-------|---|-------|-------|-------|----------|
|   |       |       |       |   |       |       |       | PWMPRCLK |

This register selects the prescale clock source for clocks A and B independently

| PCKA[2–0] – Prescaler for Clock A | $A = 24 \text{ MHz} / 2^{(PCKA[2-0])}$ |
|-----------------------------------|----------------------------------------|
| PCKB[2–0] – Prescaler for Clock B | $B = 24 MHz / 2^{(PCKB[2-0])}$         |

| CAE7 | CAE6 | CAE5 | CAE4 | CAE3 | CAE2 | CAE1 | CAE0 | 0x00A4 PWMCAE |
|------|------|------|------|------|------|------|------|---------------|
|      |      |      |      |      |      |      |      |               |

Select center aligned outputs (1) or left aligned outputs (0) Choose PWMCAE = 0x00 to choose left aligned mode

| CON67 | CON45 | CON23 | CON01 | PSWAI | PFRZ | 0 | 0 | 0x00A5 PWMCTL |
|-------|-------|-------|-------|-------|------|---|---|---------------|

CONxy - Concatenate PWMx and PWMy into one 16 bit PWMChoose PWMCTL = 0x00 to choose 8-bit mode

|       | -     |       |       | _     |       |       |       | 1                   |
|-------|-------|-------|-------|-------|-------|-------|-------|---------------------|
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | 0x00A8 PWMSCLA      |
| 211 / | 511 0 | 2110  | 211 1 | 5110  | 2     | 2     | 2 0   | 011001101 011000111 |

PWMSCLA adjusts frequency of Clock SA

| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | 0x0098 PWMSCLB |
|-------|-------|-------|-------|-------|-------|-------|-------|----------------|
|-------|-------|-------|-------|-------|-------|-------|-------|----------------|

PWMSCLB adjusts frequency of Clock SB

PWMPERx sets the period of Channel n PWM Period = PWMPERn x Period of PWM Clock n

PWMDTYx sets the duty cycle of Channel n PWM Duty Cycle = PWMDTYn / Period x 100%

### How to set the clock for PWM Channel 0

You need to set PCKA, PWSCALA, PCLK0, and PWPER0





PWMCNT0 counts from 0 to PWMPER0 – 1 It takes PWMPER0 periods of CLK0 to make one Ch0 period

Ch0 Period = PWMPER0 x CLK0 Period

$$= \begin{cases} PWMPER0 x (2^{PCKA}) & (PCLK0 = 0) \\ \\ PWMPER0 x (2^{PCKA+1}) x PWMSCLA & (PCLK0 = 1) \end{cases}$$

## How to set the Period for PWM Channel 0

- To set the period for PWM Channel 0:
- Set the PWM Period register for Channel 0, PWMPER0
- CLK0, the clock for Channel 0, drives a counter (PWCNT0)
- PWCNT0 counts from 0 to PWMPER0 1
- The period for PWM Channel 0 is PWMPER0 × Period of CLK0
- There are two modes for the clock for PWM Channel 0
- You select the mode by the PCLK0 bit

- If PCLK0 == 0, CLK0 is generated by dividing the 24 MHz clock by

 $2^{PCKA}$ , where PCKA is between 0 and 7

- If PCLK0 == 1, CLK0 is generated by dividing the 24 MHz clock by

 $2^{PCKA+1} \times PWSCLA$ , where PCKA is between 0 and 7 and PWSCALA is between 0 and 255 (a value of 0 gives a divider of 256)

• The Period for PWM Channel 0 (in number of 41.67 ns cycles) is calculated by

Period 
$$\begin{cases} PWMPER0 \times 2^{PCKA} & \text{if } PCLK0 == 0 \\ \\ \{ PWMPER0 \times 2^{PCKA+1} \times PWMSCLA & \text{if } PCLK0 == 1 \end{cases}$$

• With PCLK0 == 0, the maximum possible PWM period is 1.36 ms

- With PCLK0 == 1, the maximum possible PWM period is 0.695 s
- To get a 0.5 ms PWM period, you need 12,000 cycles of the 24 MHz clock.

$$\{ PWMPER0 \times 2^{PCKA}$$
 if PCLK0 == 0  
12,000 =

{ 
$$PWMPER0 \times 2^{PCKA+1} \times PWMSCLA$$
 if  $PCLK0 == 1$ 

• You can do this in many ways

- With PCLK0 = 0, can have

| РСКА | PWMPER0 |         |
|------|---------|---------|
| 6    | 187     | Approx. |
| 7    | 94      | Approx. |

- With PCLK0 = 1, can have

| РСКА | PWMSCLA | PWMPER0 |       |
|------|---------|---------|-------|
| 0    | 24      | 250     | Exact |
| 0    | 24      | 240     | Exact |
| 0    | 30      | 200     | Exact |
| 1    | 12      | 250     | Exact |
| 1    | 15      | 200     | Exact |
| 2    | 6       | 250     | Exact |
| 2    | 10      | 150     | Exact |

and many other combinations

• You want PWMPER0 to be large (say, 100 or larger)

If PWMPER0 is small, you don't have much control over the duty cycle
For example, if PWMPER0 = 4, you can only have 0%, 25%, 50%, 75% or 100% duty cycle

• Once you choose a way to set the PWM period, you can program the PWM registers

• For example, to get a 0.5 ms period, let's use PCLK0 = 1, PCKA = 0, PWMSCLA = 30, and PWMPER0 = 200

- We need to do the following:
- Write 0x00 to PWMCTL (to set up 8-bit mode)
- Write 0xFF to PWMPOL (to select high polarity mode)
- Write 0x00 to PWMCAE (to select left aligned mode)
- Write 0 to Bits 2,1,0 of PWMPRCLK (to set PCKA to 0)
- Write 1 to Bit 0 of PWMCLK (to set PCLK0 = 1)
- Write 30 to PWMSCLA
- Write 200 to PWMPER0
- Write 1 to Bit 0 of PWME (to enable PWM on Channel 0)
- Write the appropriate value to PWDTY0 to get the desired duty cycle
- (e.g., PWDTY0 = 120 will give 60% duty cycle)

#### C code to set up PWM Channel 0 for 0.5 ms period (2 kHz frequency) PWM with 60% duty cycle

| /* 8-bit Mode */                  |
|-----------------------------------|
| /* High polarity mode */          |
| /* Left-Aligned */                |
| /* PCKA = 0 */                    |
| /* PCLK0 = 1 */                   |
|                                   |
|                                   |
| /* Enable PWM Channel 0 */        |
| /* 60% duty cycle on Channel 0 */ |
|                                   |

#### Interdependence of clocks for Channels 0, 1, 4 and 5

- The clocks for Channels 0, 1, 4 and 5 are interdependent
- They all use PCKA and PWMSCLA
- To set the clock for Channel n, you need to set PCKA, PCLKn, PWMSCLA (if PCLKn == 1) and PWMPERn where n = 0, 1, 4 or 5



#### **Clock Select for PWM Channels 0 and 1**

# PWM Channels 2, 3, 6 and 7

• PWM channels 2, 3, 6 and 7 are similar to PWM channels 0, 1, 4 and 5

• To set the clock for Channel n, you need to set PCKB, PCLKn, PWMSCLB (if PCLKn == 1) and PWMPERn where n = 2, 3, 6 or 7



### **Clock Select for PWM Channels 2 and 3**

# Using the HCS12 PWM

- 1. Choose 8-bit mode (PWMCTL = 0x00)
- 2. Choose high polarity (PWMPOL = 0xFF)
- 3. Choose left-aligned (PWMCAE = 0x00)
- 4. Select clock mode in PWMCLK:

- PCLKn = 0 for  $2^{N}$ ,
- PCLKn = 1 for  $2^{(N+1)} \times M$ ,
- 5. Select N in PWMPRCLK register:
  - PCKA for channels 5, 4, 1, 0;
  - PCKB for channels 7, 6, 3, 2.
- 6. If PCLKn = 1, select M
  - PWMSCLA = M for channels 5, 4, 1, 0
  - PWMSCLB = M for channels 7, 6, 3, 2.
- 7. Select PWMPERn, normally between 100 and 255.
- 8. Enable desired PWM channels: PWME.
- 9. Select PWMDTYn, normally between 0 and PWMPERn. Then

Duty Cycle n = (PWMDTYn / PWMPERn)  $\times$  100% Change duty cycle to control speed of motor or intensity of light, etc.

10. For 0% duty cycle, choose PWMDTYn = 0x00.

### Program to use the HCS12 PWM System

/\*

```
* Program to generate 15.6 kHz pulse width modulation
```

- \* on Port P Bits 0 and 1
- \* To get 15.6 kHz: 24,000,000/15,600 = 1538.5
- \* Cannot get exactly 1538.5
- \* Use 1536, which is 2^9 x 3
- \* Lots of ways to set up PWM to achieve this. One way is 2<sup>3</sup> x 192
- \* Set PCKA to 3, do not use PWMSCLA, set PWMPER to 192

\*

```
*/
```

#include "hcs12.h"

```
main()
```

{

```
/* Choose 8-bit mode */
PWMCTL = 0x00;
```

```
/* Choose left-aligned */
PWMCAE = 0x00;
```

```
/* Choose high polarity on all channels */
PWMPOL = 0xFF;
```

```
/* Select clock mode 0 for Channels 1 and 0 (no PWMSCLA) */
PWMCLK = PWMCLK & ~0x03;
```

```
/* Select PCKA = 3 for Channels 1 and 0 */
PWMPRCLK = (PWMPRCLK & ~0x4) | 0x03;
```

```
/* Select period of 192 for Channels 1 and 0 */
PWMPER0 = 192;
PWMPER1 = 192;
```

```
/* Enable PWM on Channels 1 and 0 */
PWME = PWME | 0x03;
```

PWMDTY0 = 48; /\* 25% duty cycle on Channel 0 \*/ PWMDTY1 = 96; /\* 50% duty cycle on Channel 1 \*/

```
while (1)
```

{

}

}

/\* Code to adjust duty cycle to meet requirements \*/