Course Overview

URL: <u>http://www.ee.nmt.edu/~erives/</u>

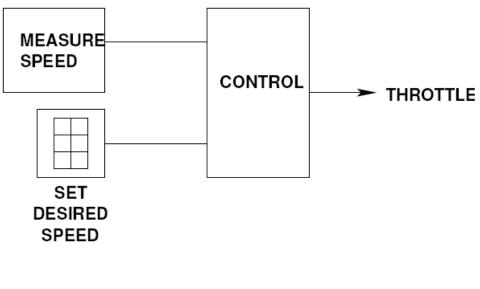
Texts: Freescale Databooks on the MC9S12 (You can pick up the Freescale data sheets at the end of class today)

The HCS12/9S12: An Introduction to Software and Interfacing (Recommended)

- Introduction to the MC9S12 Microcontroller
- Binary and Hexadecimal Numbers
- Assembly Language Programming
- C Language Programming
- Introduction to MC9S12 Internal Peripherals
- The MC9S12 Timer Subsystem
- Interrupts using the Timer Subsystem
- The MC9S12 Pulse Width Modulator Subsystem
- The MC9S12 Expanded Mode
- Address and Data Buses and Timing
- Adding Memory and External Peripherals
- Interfacing to the MC9S12
- More MC9S12 Internal Peripherals
- The A/D Converter Subsystem
- The Serial Peripheral Interface
- The Serial Communications Interface
- Using the MC9S12 in a Control Application

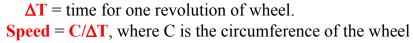
Lab Overview

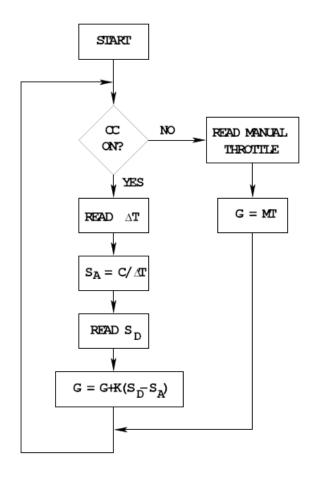
- The lab meets Monday and Wednesday afternoons. No labs this week.
- Lab handouts will be posted on the EE 308 website:
- The 9S12 evaluation kits will be passed out in lab next week.
- You need to bring a bound lab notebook to the first lab.

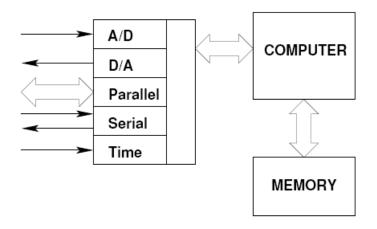

• There will be a prelab for each lab. This must be done and turned in at the start of your lab section. The lab TA will verify that you have completed the prelab.

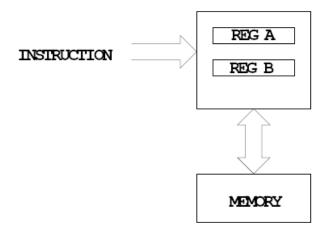
- Introduction to Microprocessors and Microcontrollers.
 - Huang, Sections 1.2, 1.3


•

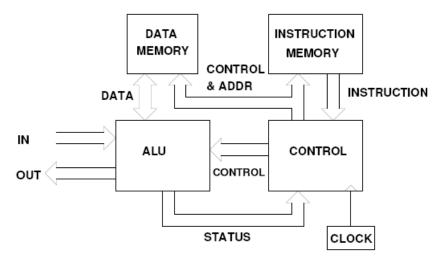

- Course Overview
- Cruise Control Block Diagrams and Flowchart
- Block Diagrams of Simple Microprocessor and Microcontroller
- Harvard architecture and Princeton architecture microprocessor block diagrams
- Memory map for a Princeton architecture microprocessor


AUTOMOBILE CRUISE CONTROL

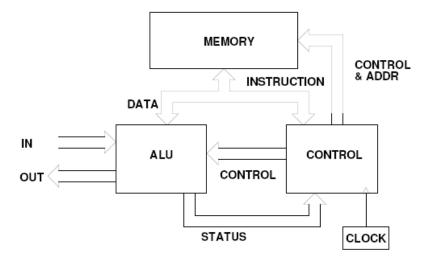

AUTOMOBILE CRUISE CONTROL



MICROCONTROLLER


SIMPLE MICROPROCESSOR

INSTRUCTION	ACTION
18 06	$(A) + (B) \Longrightarrow A$
	Add accumulators A and B
87	$0 \Rightarrow A$
	Clear accumulator A
5A 05	$(A) \Rightarrow Address 5$
	Store accumulator A to Memory


HARVARD ARCHITECTURE

MICROPROCESSOR

PRINCETON (VON NEUMAN) ARCHITECTURE

MICROPROCESSOR

MEMORY MAP

(Princeton Architecture)

Function of memory
determined by programmer

DATA

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	C	12
1101	D	13
1110	Е	14
1111	F	15

Convert Binary to Decimal

 $\begin{array}{c} 1111011_{\ 2} \\ 1 x \ 2^{6} + 1 x \ 2^{\ 5} + 1 x \ 2^{\ 4} + 1 x \ 2^{\ 3} + 0 x \ 2^{\ 2} + 1 x \ 2^{\ 1} + 1 x \ 2^{\ 0} \\ 1 x \ 64 + 1 x \ 32 + 1 x \ 16 + 1 x \ 8 + 0 x \ 4 + 1 x \ 2 + 1 x \ 1 \\ 123_{\ 10} \end{array}$

Convert Hex to Decimal

 $\begin{array}{l} 82D6_{16} \\ 8 x 16^3 + 2 x 16^2 + 13 x 16^1 + 6 x 16^0 \\ 8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1 \\ 33494_{10} \end{array}$