« The 9S12 Input Capture Function
« Huang Sections 8.1-8.5
« ECT 16B8C Block User Guide
o Interrupts on the 9512
Capturing the time of an external event
The 9S12 Input Capture Function
Registers used to enable the Input Capture Function
Using the 9S12 Input Capture Function
A program to use the 9512 Input Capture in polling mode
Using the Keyword volatile in C
Using D-Bug12 Routines to Print Information to the Terminal
A program to use the 9S12 Input Capture in interrupt mode

O 0 0O 0O O O O O

Using Input Capture on the 9S12
Input Capture: Connect a digital signal to a pin of Port T. Can capture the time of an edge
(rising, falling or either) — the edge will latch the value of TCNT into TCx register. This
is used to measure the difference between two times.
To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 — Bit 7 of TSCR1 reg)

2. Set prescaler (TSCR2 reg). To get most accuracy set overflow rate as small as possible,
but larger than the maximum time difference you need to measure.

3. Setup PTx as IC (0 - bit x of TIOS reg)
4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

Table 3-3 Edge Detector Circuit Configuration

EDGxEB | EDGxA Configuration
a a Capiure disabled
a 1 Capiure on rising edges only
1 a Capture on faling edges only
1 1 Capture on any edge (rising or falling)

5. Clear flag (1 — bit x of TFLG1 reg, 0 — all other bits of TFLG1)

6. If using interrupts
(a) Enable interrupt (1 — bit x of TIE reg)
(b) Clear I bit of CCR (cli or enable())
(¢) In interrupt service routine,
1. Read time of edge from TCx

i1. Clear flag (1 — bitx of TFLGI reg, 0 — all other bits of TFLG1)

7. If polling in main program
(a) Wait for Bit x of TFLG1 to become set
(b) Read time of edge from TCx
(c) Clear flag (1 — bit x of TFLG1 reg, 0 — all other bits of TFLG1)

/* Program to determine the time between two rising edges using the *
*# 8512 Input Capture subsystem

*/

#include "hcsl2.h"

#include "DBuglZ2.h"

unsigned int first, second, time;

main ()

{

TSCR1
TSCRZ

0x80; /* Turn on timer subsystem */
0x05; /* Set prescaler for divide by 32 */
/% 87.38 ms overflow time */

/* Setup for ICl */

TIOS = TIOS & ~0x02; /* Iocl set for Input Capture */
TCTLd = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */
TFLG1 = 0x02; /* Clear Icl Flag */

/* Setup for ICZ2 */

TIOS = TIOS & ~0x04; /* I0Cc2 set for Input Capture */
TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */
TFLG1 = 0x04; /* Clear ICZ2 Flag */

/* Get first rising edge */
while ((TFLG1 & 0x02) == 0) ; /* Wait for 1st rising edge; */
first = TC1; /* Read time of 1st edge,; */

/* Capture 2Znd rising edge */

while ((TFLG1 & 0x04) == 0) ; /* Wait for 2nd rising edge; */
second = TC2; /* Read time of Znd edge; */
time = second - first; /* Calculate total time */

DB12FNP->printf ("time = %d cycles\n",time);
asm(" swi");

Using the Keyword volatile in C

* Consider the following code fragment, which waits until an event occurs on Pin 2 of
PORTT:

#define TRUE 1

#define FRLSE 0

#include "hcsl2.h"

#include "DBugl2.h"
#include "wectorslZ.h"
#define enable() asm(" cli™)

void INTERRUFT tic2 isr(veid):
unsigned int time, done;

main()

{
/* Code to set up Input Capture 2 */

TFLG1 = 0x04; /* Clear CF2 */
UserTimerCh2 = (short) &tic2 isr; /* Set interrupt vector */
enable () ; /* Enable Interrupts */

done = FRLSE;
while (!done) -
asm("swi');
}
void INTERRUFT ticZ isr(void)
{
time = TC2;
TFLG1 = 0x04;
done = TRUE;

* An optimizing compiler knows that done will not change in the main() function. It may
decide that, since done is FALSE in the main() function, and nothing in the main()
function changes the value of done, then done will always be FALSE, so there is no need
to check if it will ever become TRUE.
* An optimizing compiler might change the line

while (!done) ;
to

while (TRUE) ;

and the program will never get beyond that line.

* By declaring done to be volatile, you tell the compiler that the value of done might
change somewhere else other than in the main() function (such as in an interrupt service
routine), and the compiler should not optimize on the done variable.

volatile unsigned int time, done;

« If a variable can change its value outside the normal flow of the program (i.e., inside an
interrupt service routine), declare the variable to be of type volatile.

Using D-Bug12 Routines to Print Information to the Terminal

D-Bug12 has several built-in C routines. Descriptions of these can be found in D-BUG12
V4.x.x Reference Guide. To use these routines you need to include the header file
DBugl2.h. These work like ordinary C functions, but you call them with pointers to the
routines in D-Bugl2. For example, you would call the putchar() function with the
following line of C code:

DB12FNP->putchar(c);

Here is a C program to print Hello, world! to the terminal:
#include "DBugl2.h"

void main (void)
{

DB12FNP->printf ("Hello, world!inh\r"):
}

Here is a program to print a number to the terminal in three different forms:

#include "DBugl2.h"
void main (void)
{
unsigned int 1i;
i = 0x£f000;
DB12FNP->printf ("Hex: 0x%04x, Unsigned: %u, Signed: %di\n\r",i,i,i):s

}

The output of the above program will be:

Hex: 0xf000, Unsigned: 61440, Signed: -4096

Program to measure the time between two rising edges, and print out the result

// Program to determine the time between two rising edges using the 9512 Input
// Capture * subsystem.
/4 This program uses interrupts to determine when the two edges have occurred.

#include "hcsl2 . h"
#include "DBuglz.h"
#include "wectorslZ2.h"
#define enable() asm("cli™)
#define stop() asm("swi");

/* Function Prototypes */
void INTERRUPT ticl isr(veid):;

/* Declare things changed inside ISR as wveolatile */
volatile unsigned int first, second, time;
volatile unsigned char count=0;

main ()

{

/* Turn on timer subsystem */
/* Set prescaler to 350 ms */
TSCR1 = 0xB0;
TECR2 0=x07;

/* Setup for ICI */

TIOS = TIOS & ~0x02; /* Configure PT1 as IC */
TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */
TFLGl = 0x02; /* Clear ICI1 Flag */

/* Set interrupt vector for Timer Channel 1 */
UserTimerChl = (short) &aticl isr;
TIE = TIE | 0x02; /* Enable ICI1 Interrupt */

/* Enable interrupts by clearing I bit of CCR */
enable () ;

while (count < 2)

{

asm("wai"); /* Low power mode while waiting */
}
time = first - second; /* Calculate total time */
DB12FNP->printf ("delta time = %d cycles\r\n",time);
stop ()
}
void INTERRUPT ticl isr (vedid)
{
if (count == 0)
{
first = TC1;
count = 1;
DB12FNP->printf ("first = %u ‘\r\n", first);
}
else
{
second = TC1;
count = 2;
DB12FNP->printf ("second = %u cycles\r\n", second);
}
TFLG1 = 0x02;
Timer Overflow and Input Capture
=
WD Raad
TFLER
] a *
TCE
24T S ok mscakr 1A 8 Comir TCE
TCNT
T
Wil
TFLG2
PORTT 24 CET;N e
o E0GH BoA ke
{TCTLA:4) oF
10 [sckiia e o
e TFLG
11 Bk _ a " LT LT
[1B
TIE CCR

F

TRLGA

Port T Pin x s#tup as Input Capture (105 = 0 in TOIS)

1B
CoR

/* print dt */;

Inmerum

The HCS12 Output Compare Function

Want event to happen at a certain time
Want to produce pulse with width T

T

. T — s

Wait until TCNT == 0x0000, then bring PA0 high
Wait until TCNT == T, then bring PAO low

while (TCNT != 0x0000) ;
PORTA = PORTA | 0x01;
while (TCNT I=T) ;
PORTA = PORTA & ~0x01;

Problems:

1) May miss TCNT == 0x0000 or TCNT ==T
2) Time not exact — software delays

3) Cannot do anything else while waiting

When TCNT == 0x0000, the output goes high
When TCNT == T, the output goes low

Now pulse is exactly T cycles long

Output Compare PORT T 0-7

To use Output Compare, you must set [OSx to 1 in TIOS

O Ol (TCTL 1400
Tl B2 waat type
o0 = Hok Theed of @aaalyou want

ol =
it =
1 =W
16 B Counber
Timsg Chock o Q
TCHT
Enabisw i TEN
Satrate with escabr
18 Bt
L]
COMPARATOR
W&
Tox o
Reglkr

Witk thma you want sreat

ta happen to TGx Feglakes
xF
Wil
TFLGT

The HCS12 Output Compare Function

PTa Pin
POETT

o
fgad
TFLGT

=l []:2 3
TIE oce

Inbgarupl

» The HCS12 allows you to force an event to happen on any of the eight PORTT pins

* An external event is a rising edge, a falling edge, or a toggle

* To use the Output Compare Function:

— Enable the timer subsystem (set TEN bit of TSCR1)

— Set the prescaler

— Tell the HCS12 that you want to use Bit x of PORTT for output compare
— Tell the HCS12 what you want to do on Bit x of PORTT (generate rising edge, falling

edge, or toggle)

— Tell the HCS12 what time you want the event to occur

— Tell the HCS12 if you want an interrupt to be generated when the event is forced to

occur

Write a 1 to Bit 7 of TSCR1 to turn on timer

BIT? 8 5 4 3 2 BITC
R 0 0 0
W TEM TSWAI TSFRZ TFFCA PRNT
RESET: o 0 0 0 i} 0 0 0

= Unimplementad or Reserved

Figure 3-8 Timer System Control Register 1 (TSCR1)

To turn on the timer subsystem: TSCR1 = 0x80;

Set the prescaler in TSCR2
Make sure the overflow time is greater than the width of the pulse you want to generate

BITT] 5 4 3 2 1 BITO
R o D
TOI TCRE PR2 FPR1 PRO
W
RESET: 0 a 0 o 0] 0 a

= Unimplemsnted or Ressrved

Figure 3-11 Timer System Control Register 2 (TSCR2)

To have overflow rate of 21.84 ms:
TSCR2 = 0x03;

Write a 1 to the bits of TIOS to make those pins output capture

BITT L] 5 4 E] 2 1 BITD
E, 1057 | 1058 | 1055 ‘ 1054 ‘ 1053 | 1052 | 1051 ‘ 1050 |
RESET: [u] o o [u] [u] o o [u]

Figure 3-1 Timer Input Capture/Output Compare Register (TIOS)

To make Pin 4 an input capture pin: TIOS = TIOS | 0X10;

Write to TCTL1 and TCTL2 to choose the action to take

BIT? -] 5 4 3 2 1 BITD
R
W M7 oLy omMe oLs OME OLs CM4 oL4
RESET 0 [i] [i] o o 0 0 [i]
BITY G] 4 3 2 1 BITD
R
W oMz oLz oMz aLz OM1 oL oMo OLD
RESET o o [u] 0 0 0 0 o

Figure 3-8 Timer Control Register 1/Timer Control Register 2 (TCTL1/TCTLZ2)

Table 3-2 Compare Result Output Action

OMx OlLx Action
Taggle OCx output line

[u] Clear OCx output line to zero

M

o [u] Timer disconnected from autput pin logic
]

1

1

Set OCx output line to one

To have Pin 4 toggle on compare:
TCTL1 = (TCTL1 | 0x01) & ~0x02;

Write time you want event to occur to TCn register.
To have event occur on Pin 4 when TCNT == 0x0000: TC4 = 0x0000;

To have next event occur T cycles after last event, add T to TCn.
To have next event occur on Pin 4 500 cycles later: TC4 = TC4 + 500;

When TCNT == TCn, the specified action will occur, and flag CFn will be set.
To clear the flag, write a 1 to the bit you want to clear (0 to all others)

BITT g 5 4 3 2 1 BITO
: C7F CBF C5F C4F C3F C2F Ci1F COF
RESET: o o 1] i} o o o a
Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)
To wait until TCNT == TC4: while ((TFLG1 & 0x10) == 0);
To clear flag bit for Pin 4: TFLG1 = 0x10;

To enable interrupt when compare occurs, set corresponding bit in TIE register

BIT? = 5 4 3 2 1 BITD
R
C7l Cail csl Ccal Cal c2i cl col
w
RESET: 0 0 [u] 0 o 0 [u] o

Figure 3-10 Timer Interrupt Enable Register (TIE)
To enable interrupt when TCNT ==TC4: TIE =TIE | 0x10;

