
• The 9S12 Serial Peripheral Inteface (SPI)
• Huang Section 10.2 through 10.6
• SPI Block User Guide

The 9S12 Serial Peripheral Interface (SPI)

• The 9S12 has a Synchronous Serial Interface

• On the 9S12 it is called the Serial Peripheral Interface (SPI)

• Information on the SPI can be found in the SPI Block User Guide.

• If an 9S12 generates the clock used for the synchronous data transfer it is operating in
Master Mode.

• If an 9S12 uses and external clock used for the synchronous data transfer it is operating
in Slave Mode.

• If two 9S12’s talk to each other using their SPI’s one must be set up as the Master and
the other as the Slave.

• The output of the Master SPI shift register is connected to the input of the Slave SPI
shift register over the Master Out Slave In (MOSI) line.

• The input of the Master SPI shift register is connected to the output of the Slave SPI
shift register over the Master In Slave Out (MISO) line.

• After 8 clock ticks, the data originally in the Master shift register has been transferred to
the slave, and the data in the Slave shift register has been transferred to the Master.

Synchronous Serial Communications

Use of Slave Select with the 9S12 SPI

• A master 9S12 can talk with more than one slave 9S12’s

• A slave 9S12 uses its Slave Select (SS) line to determine if it is the one the master is
talking with

• There can only be one master 9S12, because the master 9S12 is the device which
generates the serial clock signal.

SYNCHRONOUS SERIAL COMMUNICATIONS

With select lines, one master can communicate with more than one slave

Using the 9S12 SPI

• In synchronous serial communications, one device talks to another using a serial data
line and a serial clock.

• There are a number of decisions to be made before communication can begin.

• For example
– Is the 9S12 operating in master or slave mode?
– Is the serial data sent out most significant bit (MSB) first, or least significant bit (LSB)
first?
– How many bits are sent in a single transfer cycle?
– Is the data valid on the rising edge or the falling edge of the clock?

– Is the data valid on the first edge or the second edge of the clock?
– What is the speed of the data transfer (how many bits per second)?
– Are there two uni-directional data lines or one bi-directional data line?

• The 9S12 SPI is very versatile, and allows you to program all of these parameters.

• The 9S12 SPI has 5 registers to set up and use the SPI system.

SPI0CR1 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE

SPI0CR2 0 0 0 MODFEN BIDIROE 0 SPISWAI SPC0

SPI0BR 0 SPPR2 SPPR1 SPPR0 0 SPR2 SPR1 SPR0

SPI0SR SPIF 0 SPTEF MODF 0 0 0 0

SPI0DR BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 B IT 2 BIT 1 BIT 0

Setting up the 9S12 SPI Clock Mode

• You can program the SPI clock to determine the following things:

• Is the data valid on the first or the second edge of the clock (clock phase)?

• Is the clock idle high or idle low (clock polarity)?

• This setup is done in the SPI0CR1 register.

Setting up the 9S12 SPI Clock Mode

• The speed of the 9S12 clock is set up in the SPI0BR register.

• The clock speed is set only if the 9S12 is being used as a master.

• The possible clock speeds (for a 24 MHz E-clock) are:

SPPR2 SPPR1 SPPR0 SPPR2 SPR1 SPR0 E clock
Divisor

Frequency at bus
clock=24 MHz

0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.

0
0
0
0
0
0
0
0
1
1
1
1
1
.
.
.

0
0
0
0
1
1
1
1
0
0
0
0
1
.
.
.

0
0
1
1
0
0
1
1
0
0
1
1
0
.
.
.

0
1
0
1
0
1
0
1
0
1
0
1
0
.
.
.

2
4
8
16
32
64
128
256
4
8
16
32
64
.
.
.

12.0 MHz
6.0 MHz
3.0 MHz
1.5 MHz
750 kHz
375 kHz

187.5 kHz
93.75 kHz
6.0 MHz
3.0 MHz
1.5 MHz
750 kHz
375 kHz

.

.

.

SPPR2 SPPR1 SPPR0 SPPR2 SPR1 SPR0 E clock
Divisor

Frequency at bus
clock=24 MHz

.

.

.
1
1
1
1
1
1
1
1
1
1
1
1
1

.

.

.
1
1
1
1
1
1
1
1
1
1
1
1
1

.

.

.
0
0
0
0
0
1
1
1
1
1
1
1
1

.

.

.
0
1
1
1
1
0
0
0
0
1
1
1
1

.

.

.
1
0
0
1
1
0
0
1
1
0
0
1
1

.

.

.
1
0
1
0
1
0
1
0
1
0
1
0
1

.

.

.
112
224
448
896
1792
16
32
64
128
256
512
1024
2048

.

.

.
214.29 kHz
107.14 kHz
53.57 kHz
26.78 kHz
13.39 kHz
1.5 MHz
750 kHz
375 kHz

187.5 kHz
93.75 kHz
46.87 kHz
23.43 kHz
11.71 kHz

Using the 9S12 Serial Peripheral Interface

Things to set up when using the 9S12 SPI subsystem

• Enable SPI

• Master or Slave?
– Master generates clock for data transfers; slave uses master’s clock

• MSB first or LSB first?
– Normally, MSB first

• Clock Polarity
– Clock idle low or clock idle high?

• Clock Phase
– Data valid on first clock edge or second clock edge?

• Clock Speed (set by Master)

• Generate interrupt after data transferred?

• Bidirectional Mode

Use the following registers:

SPI0CR1 (SPICR1), SPI0CR2 (SPICR2), SPI0BR (SPIBR), SPI0SR (SPISR),
SPI0DR (SPIDR)

1. Enable SPI (SPE bit of SPI0CR1)

2. Clock phase and polarity set to match device communicating with

3. Select clock polarity – CPOL bit of SPI0CR1
• CPOL = 0 for clock idle low
• CPOL = 1 for clock idle high

4. Select clock phase – CPHA bit of SPI0CR1
• CPHA = 0 for data valid on first clock edge
• CPHA = 1 for data valid on second clock edge

5. Select master or slave MSTR bit of SPI0CR1
• Will be master when talking to devices such as D/A, A/D, clock, etc.
• May be slave if talking to another microprocessor

6. If you want to receive interrupt after one byte transferred, enable interrupts with SPIE
bit of SPI0CR1
• Normally master will not use interrupts – transfers are fast enough that you will
normally wait for transfer to complete
• Will often use interrupts when configured as a slave – you will get interrupt when
master sends you data

7. Configure LSBF of SPI0CR1 for MSB first (LSBFE = 0) or LSB first (LSBFE = 1)
• For most devices, use MSB first

8. Configure for uni-directional mode (bit SPC0 = 0) or bi-directional mode
(bit SPC0 = 1) in SPI0CR2
• Bidirectional mode (SPC0 = 1 in SPI0CR2) used for three-wire communication.
• When in bidirectional mode, the BIDIROE bit controls the MOSI and MISO output
buffer of the SPI. In master mode this bits controls the output buffer of the MOSI port, in
slave mode it controls the output buffer of the MISO port.
• BIDIROE = 0 for output buffer disabled
• BIDIROE = 1 for output buffer enabled

Master Mode:

1. Set clock rate – SPPR2:0 and SPR2:0 bits of SPI0BR
• Normally select clock at highest rate compatible with slave

2. If using bidirectional mode, MOSI pin is used for data (now called MOMI, or Master
Out Master In).

3. MISO automatically configured as input by choosing master mode

4. Configure some way to select slave(s) – probably SS if only one slave; other I/O bits if
multiple slaves

5. Start data transfer by writing byte to SPI0DR

6. After transfer complete (8 clock cycles), SPIF bit of SPI0SR set.
• If writing data to slave, can send next byte to SPI0DR
• If reading data from slave, can read data from SPI0DR

7. Set up SSOE of SPI0CR1
• SSOE = 0 if you want to control SS yourself (to be able to send more than one byte with
SS low)
• SSOE = 1 and MODFEN = 1 if you want to SS controlled automatically
(SS will be active for one byte at a time)

Slave Mode:

1. No need to set clock speed – slave accepts data at rate sent by master (up to 12 MHz)

2. If using bidirectional mode, MISO pin is used for data (now called SISO, or Slave In
Slave Out).

3. No need to Make MOSI, SCLK, and SS inputs – this is done automatically when
configuring 9S12 as slave
• If receiving data from master, wait until SPIF flag of SPI0SR set (or until SPI interrupt
received), then read data from SPI0DR
• If sending data to master, write data to SPI0DR before master starts transfer

A C program to use the 9S12 in master mode

Here is a version using a loop to transfer data:

