• Decimal, Hexadecimal and Binary Numbers

- Binary numbers are a code, and represent what the programmer intends for the code
- Convert binary and hex numbers to unsigned decimal
- Convert unsigned decimal to hex
- Unsigned number line and wheel
- \circ Signed number line and wheel
- Binary, Hex, Signed and Unsigned Decimal
- Signed number representation --- 2's Complement form
- Using the 1's complement table to find 2's complements of hex numbers
- Overflow and Carry
- Addition and subtraction of binary and hexadecimal numbers
- The Condition Code Register (CCR): N, Z, V and C bits

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	А	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

What does a number represent?

Binary numbers are a code, and represent what the programmer intends for the code. **0x72** Some possible meanings:

'r' (ASCII)
INC MEM (hh ll) (HC12 instruction)
2.26V (Input from A/D converter)
114₁₀ (Unsigned number)
114₁₀ (Signed number)
Set temperature in room to 69 °F

Set cruise control speed to 120 mph

Binary to Unsigned Decimal:

Convert Binary to Unsigned Decimal 1111011 $_2$ 1 x 2⁶ + 1 x 2 ⁵ + 1 x 2 ⁴ + 1 x 2 ³ + 0 x 2 ² + 1 x 2 ¹ + 1 x 2 ⁰ 1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1 123 $_{10}$

Hex to Unsigned Decimal

Convert Hex to Unsigned Decimal 82D6 $_{16}$ 8 x 16³ + 2 x 16² + 13 x 16¹ + 6 x 16⁰ 8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1 33494 $_{10}$

Unsigned Decimal to Hex

Convert Unsigned Decimal to Hex

Division	Q	R	
		Decimal	Hex
721/16	45	1	1
45/16	2	13	D
2/16	0	2	2

$721_{10} = 2D1_{16}$

Unsigned Number Line: Numbers go from 0 to ∞

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Unsigned Number Wheel: Numbers go from 0 to 2N - 1

Signed Number Line: Numbers go from $-\infty$ to ∞

Number Wheel: What to do about 100₂

Number Wheel: Numbers go from $-2^{(N-1)}$ to $2^{(N-1)} - 1$

Number Wheel: Carry and Overflow

• Carry applies to **unsigned numbers** — when adding or subtracting, result is incorrect.

• Overflow applies to **signed numbers** —when adding or subtracting, result is incorrect.

Binary, Hex and Decimal (Signed & Unsigned) Numbers (4-bit representation)

Binary	Hex	Decimal	
		Unsigned	Signed
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	8	-8
1001	9	9	-7
1010	Α	10	-6
1011	В	11	-5
1100	С	12	-4
1101	D	13	-3
1110	E	14	-2
1111	F	15	-1

Signed Number Representation in 2's Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 0–7), then the number is positive.

Get decimal equivalent by converting number to decimal, and use the + sign.

Example for 8-bit number:

 $\begin{aligned} \mathbf{3A}_{16} & \longrightarrow + (\ 3 \ x \ 16^1 + 10 \ x \ 16^0 \)_{10} \\ & + (\ 3 \ x \ 16 \ + \ 10 \ x \ 1 \)_{10} \\ & + \mathbf{58}_{10} \end{aligned}$

If the most significant bit is 1 (most significant hex digit 8–F), then the number is negative.

Get decimal equivalent by taking 2's complement of number, converting to decimal, and using – sign.

Example for 8-bit number:

 $\begin{array}{r} \mathbf{A3_{16}} \rightarrow - (5D)_{16} \\ - (5 \times 16^{1} + 13 \times 16^{0})_{10} \\ - (5 \times 16^{1} + 13 \times 1)_{10} \\ - 93_{10} \end{array}$

One's complement table makes it simple to finding 2's complements

F
E
D
С
в
A
9
8

To take two's complement, add one to one's complement. Take two's complement of **D0C3**: 2F3C + 1 = 2F3D • Overflow and Carry assume you have a fixed word size

• A carry is generated when you add **two unsigned numbers** together, and the result is too large to fit in the fixed word size.

• A carry is generated when you subtract **two unsigned numbers**, and the result should be negative.

• An overflow is generated when you add or subtract **two signed numbers**, and the fixed-length answer has the wrong sign.

Addition and Subtraction of Binary and Hexadecimal Numbers

1) Limit number of digits to specified word size.

4–bit word:

 $1101 \\
 + 1011 \\
 1 1000$

Keep only 4 bits in answer, carry is set

2) It does not matter if numbers are signed or unsigned – the mechanics are the same Do the operation, then determine if carry and/or overflow bits are set.

4-bit word:

1101 Neg + 1001 Neg 1 0110 Pos

Keep only 4 bits in answer, overflow is clear

Condition Code Register (CCR) gives information on the result of last operation

S X H	IN	Z	V C
-------	----	---	-----

Condition Code Register – 8 FFs

- \mathbf{C} Carry : 1 –> last operation generated a carry
- V Overflow : 1 –> last operation generated an overflow
- \mathbf{Z} Zero : 1 –> result zero, 0 –> result not zero
- N Negative : most significant bit of result
- I Interrupt mask
- H Half carry
- **X** Interrupt mask
- S Stop disable

Note: Not all HC12 instructions change CCR bits.

A bit in the CCR is the result of the last executed instruction which affects that bit. For example, consider the following instruction sequence:

aba	; Add B to A	
staa \$0900	; Store A in address \$0900	

The ABA instruction will change the <u>H, N, Z, V and C bits</u> of the CCR. The STAA instruction will change the <u>N and Z bit, and clear the V bit</u>. After the two instructions, the H and C bits will reflect the result of the ABA instruction; the N and Z bits will reflect the result of the STAA instruction (was the number stored negative or zero?), and the V bit will be 0.

Overflow occurs only under certain addition and subtraction operations

- If you add a positive and a negative number, on overflow never occurs.
- If you subtract two positive numbers, an overflow never occurs.
- If you subtract two negative numbers, and overflow never occurs.