
• Another simple program in assembly language 
• Using the stack and the stack pointer 
• Huang Section 4.3 

o A program to add all the odd numbers in a memory array 
o Flow charts 
o Assembly language program 
o Assembly listing file 
o Assembly map file 
o The Stack and the Stack Pointer 
o The stack is an area of memory used for temporary storage 
o The stack pointer points to the last byte pushed onto the stack 
o Some instructions which use the stack, and how data is pushed 

onto and pulled off of the stack. 

Input and Output Ports

• How do you get data into a computer from the outside?

Any read from address $0000 gets signals 
from outside

     LDAA  $00

Puts data from outside into accumulator A.

Data from outside looks like a memory 
location.

A Tri-State Buffer acts like a switch

If TRI is not active, the switch is open: 
OUT will not be drived by IN
Some other device can drive OUT



• How do you get data out of computer to the outside?

Any write to address $01 latches data into 
FF, so data goes to external pints

    MOVB #$AA,$01

Puts $AA on the external pins

  When a port is configured as output and 
you read from that port, the data you read 
is the data which was written to that port:

    MOVB #$AA, $01
    LDAA $01

Accumulator A will have $AA after this





Ports on the HC12

• How do you get data out of computer to the outside?
• A Port on the HC12 is a device that the HC12 uses to control some hardware.
• Many of the HC12 ports are used to communicate with hardware outside of the HC12.
• The HC12 ports are accessed by the HC12 by reading and writing memory locations 
$0000 to $03FF.
• Some of the ports we will use in this course are PORTA, PORTB and PTH:

• PORTA is accessed by reading and writing address $0000.
• PORTB is accessed by reading and writing address $0001.
• PTH is accessed by reading and writing address $0260.

• You can connect signals from the outside by connecting wires to pins 57 to 64 
(PORTA), 24 to 31 (PORTB), and to pins 32 to 35 and 49 to 52 (PTH).

– On the MiniDRAGON+ EVB, a seven-segment LED is connected to PTH.



• When you power up or reset the HC12, PORTA, PORTB and PTH are input ports.
• You can make any or all bits of PORTA, PORTB and PTH outputs by writing a 1 to the 
corresponding bits of their Data Direction Registers.

– The Data Direction Register for PORTA is located at memory address $0002. It 
is called DDRA. To make all bits of PORTA output, write a $FF to DDRA. To 
make the lower four bits of PORTA output and the upper four bits of PORTA 
input, write a $0F to DDRA.
– The Data Direction Register for PORTB is located at memory address $0003. It 
is called DDRB. To make all bits of PORTB output, write a $FF to DDRB.
– The Data Direction Register for PTH is located at memory address $0262. It is 
called DDRH. To make all bits of PTH output, write a $FF to DDRH.
– You can use DBug-12 to easily manipulate the I/O ports on the 68HCS12
– To make PTH an output, use MM to change the contents of address $0262 
(DDRH) to an $FF.
– You can now use MM to change contents of address $0260 (PTH), which 
changes the logic levels on the PTH pins.
– If the data direction register makes the port an input, you can use MD to display 
the values on the external pins.

Using Port A of the 68HC12

To make a bit of Port A an output port, write a 1 to the corresponding bit of DDRA 
(address 0x0002).
To make a bit of Port A an input port, write a 0 to the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port.

DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

Reset       0            0            0    0       0         0           0     0      $0002

For example, to make bits 3−0 of Port A input, and bits 7−4 output, write a 0xF0 to 
DDRA.
To send data to the output pins, write to PORTA (address 0x0000). When you read from 
PORTA input pins will return the value of the signals on them (0 ⇒ 0V, 1 ⇒ 5V); output 
pins will return the value written to them.

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Reset         -         -   -     -      -         - -  - $0000

Port B works the same, except DDRB is at address 0x0003 and PORTB is at address 
0x0001.



;A simple program to make PORTA output and PORTB input,
;then read the signals on PORTB and write these values
;out to PORTA

prog:  equ  $1000
PORTA:  equ  $00
PORTB:  equ  $01
DDRA:  equ  $02
DDRB:  equ  $03

org  prog
movb #$ff,DDRA  ; Make PORTA output
movb  #$00,DDRB  ; Make PORTB input
ldaa  PORTB
staa  PORTA
swi

• Because DDRA and DDRB are in consecutive address locations, you could make 
PORTA and output and PORTB and input in one instruction:

movw  #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

GOOD PROGRAMMING STYLE
1. Make programs easy to read and understand.

• Use comments
• Do not use tricks

2. Make programs easy to modify
• Top-down design
• Structured programming – no spaghetti code
• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS
1. Think about how data will be stored in memory.

• Draw a picture
2. Think about how to process data

• Draw a flowchart
3. Start with big picture. Break into smaller parts until reduced to individual instructions

• Top-down design
4. Use names instead of numbers



Another Example of an Assembly Language Program
• Add the odd numbers in an array of data.
• The numbers are 8-bit unsigned numbers.
• The address of the first number is $E000 and the address of the final number is $E01F.
• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

SUM ODD NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f
Treat numbers as 8−bit unsigned numbers

4 0xE000
5
1
8
6
11

0xE01F

Start with the big picture

4 0xE000
5
1
8
6
11

0xE01F



Add details to blocks

4 0xE000
5
1
8
6
11

0xE01F

Decide on how to use CPU registers for processing data

Pointer: X or Y −− Let us use X
Sum:   8-bit or 16−bit register

  Can use D or Y

  No way to add 8−bit number to D
  Can use ABY to add 8−bit number to Y



Add more details: Expand another block

X ⇒ 4 0xE000
5
1
8
6
11

0xE01F

More details: How to tell if number is odd, how to tell when done

How to test if even?
LSB = 0 − check LSB of memory

BRCLR 0,X,$01,even

How to check if more to do?
If X < 0xE020, more to do.

CMPX #$E020
BLO or BLT loop?

Address in unsigned, use unsigned compare

BLO loop

Convert blocks to assembly code

Done



X ⇒ 4 0xE000
5
1
8
6
11

0xE01F

Write program

;Program to sum odd numbers in a memory array

prog:  equ  $1000
data:  equ  $2000
array:  equ  $E000
len:  equ  $20

org  prog
ldx  #array  ; initialize pointer
ldy  #0  ; initialize sum to 0

loop: ldab  0,x  ; get number
brclr  0,x,$01,even  ; skip if even
aby  ; odd - add to sum

even:  inx  ; point to next entry
cpx  #(array+len)  ; more to process?
blo  loop  ; if so, process
sty  answer  ; done -- save answer
swi

org  data
answer: ds.w 1  ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.

The assembler output for the above program

Done



• Note that the assembler output shows the op codes which the assembler generates for
the HC12.
• For example, the op code for brclr 0,x,$01,even is 0f 00 01 02

as12, an absolute assembler for Motorola MCU's, version 1.2e

1000                    prog: equ  $1000
2000                    data: equ  $2000
e000                    array:equ  $E000
0020                    len: equ  $20
1000                    org  prog
1000 ce e0 00           ldx  #array  ; initialize pointer
1003 cd 00 00           ldy  #0  ; initialize sum to 0
1006 e6 00              loop: ldab  0,x  ; get number
1008 0f 00 01 02        brclr  0,x,$01,even; skip if even
100c 19 ed              aby  ; odd - add to sum
100e 08                 even: inx  ; point to next entry
100f 8e e0 20           cpx  #(array+len); more to process?
1012 25 f2              blo  loop  ; if so, process
1014 7d 20 00           sty  answer  ; done -- save answer
1017 3f                 swi
                        
2000                    org  data
2000                    answer: ds.w 1  ; reserve 16-bit word

 ; for answer

Executed: Sun Jan 20 10:00:02 2008
Total cycles: 36, Total bytes: 24
Total errors: 0, Total warnings: 0

Here is the .s19 file:

S011000046696C653A2074657374332E730A76
S1131000CEE000CD0000E6000F00010219ED088ECD
S10B1010E02025F27D20003FE1
S9030000FC


