« Another simple program in assembly language
- Using the stack and the stack pointer
- Huang Section 4.3

A program to add all the odd numbers in a memory array
Flow charts

Assembly language program

Assembly listing file

Assembly map file

The Stack and the Stack Pointer

The stack is an area of memory used for temporary storage
The stack pointer points to the last byte pushed onto the stack
Some instructions which use the stack, and how data is pushed
onto and pulled off of the stack.

Input and Output Ports

* How do you

get data into a computer from the outside?

Any read from address $0000 gets signals
from outside

SIMPLIFIED INPUT PORT LDAA $00
D, e Puts data from outside into accumulator A.
|
Dg — — Data from outside looks like a memory
- s location.
D, L g
¢ | .
1 1 our—— —— IN
2 Dy | | s
D - F
a r TR
t D3 | | o
a 4 m
L . ° A Tri-State Buffer acts like a switch
) I
e | : . . _
s L If TRI is not active, the switch is open:
P1 ; e OUT will not be drived by IN
Some other device can drive OUT
Dg — _
] .
T ——— ™
Fead from |

* How do you get data out of computer to the outside?

SIMPLIFIED OUTPUT PORT

D
Dg
D
H 5
c
1
2 Dg
D
a
t D
a 3
L
1
n Dz
=]
s
D1
Do
Write to

00001

PRFEMES O 04 BHpDGEW

Any write to address $01 latches data into
FF, so data goes to external pints

MOVB #SAA,$01
Puts $AA on the external pins
When a port is configured as output and
you read from that port, the data you read

is the data which was written to that port:

MOVB #$AA, $01
LDAA $01

Accumulator A will have $AA after this

Figure 1-1 MC9512DT256 Block Diagram

VAH VAH |=—WAH
| 2EEK Byte Flash EEPROM | ATDD wgL |= ATDH VAL |—vAL
VDDA VDDA |-=—WDDA
| 12K Byt RAM | Nl e — VSSA [=—VESA
AN «— PADOD ANO |] |=—PADDB
| 4K Byte EEPROM | ANA =— PADO1 AN1 |=— |=—PpapDog
ANZ --— P& CO2 ANZ (=] --— pPAD10
VODR—s AN2 & [=—PaDoz AN3 |- = |=—PAD11
VSR —- AN I [=—PADO4 ANY (= T |-=—PAD12
VREGEN—= Vaoltags Regulator ANE = PADOE AN || |=—PaDi3
wDD1,2 == ANB -— PALOE ANE =] -+—PAD14
VEE12 -] ANT -— PADOT ANT |- |=—PaD15
Singlewire Backgraund PIKD] = PKO | XADDATS,
BRGD== """ Nizbug Moduls CPU1Z PRAGE PI1 |- == PK1! XADDR1S!
I \
roe- e
VDOPLL=— Aot Pica |==| B | ™ |== P4 | xADDRIE!
e | —
wesplL-— PLL o en Paridic Internipt PING || += PKE | XADDR1S,
EXTAL—= Mol COP Wabchdog TS == == PKT ! FLE !
NTAL =] CIok Monitar BT .
RESET =+ Ereakpoints Bl S]
1CC [s PT1
PPEEE::: ™ ﬁ:a 10C2 ol [lempro
[
PES e | BT Systam _F_nhanced Captura 1053 o=l |2 (== FT2
w LI Integration imer 10c4 == 3 [0 == pT4
PEZmw(W | || TETRE
e la Module 10CE (| | FTE
PE4== le=| ECLK SIM
(=] {) IOCE [- PTE
PEE w | BAIDA [[eCer L
e -
PEG - | MODE
PET-+= | NOACC/FTLRS sCin FAD =] =+ PSO
THD |- e PS5
TEST-
TR I | oo el | [0S
= &,
. MISD O | [pag
| Multiplexed Address/Data Bus | Most O™ | pas &
PETqeeqe papeeqey |~ = i -
S5 [— PET T
DDRA DORB K] =
BDLC RE [=—] -
PTA FTE (J1850) TWE || o -] == PR E
= =
RACAN |=— | e P
EXEEERE jégéié“ canD T g = The 2
& T 4§ BEHE& . = | =z
FESIAYEY DEDBBYEE T moanie] © LelElzlerme 3
wWEad o, e B W W E B g THCAN [—==| S -H-gn_-..pmq g
CrfoCiGod COEETECER P - PME 2
COoCoOCOD COCOCOGQo 2 o
OOQpC0OO000 CoOOCoOood N e == PMb m
Lo of L oL of L < oL «f L of wf <L of wf =] | e PNIT =
_______________________________ 2
. [N YT 2 &
:M}““P'E“E'dnxrgﬁ-mgﬁﬂg E?E = £
WideBus Es EEREER R RE c
| coooooOCcOoOO oOoo E
T T e mam e . 1T WD =] - PJ0D H
|Mu|tiplaxadE EEF—E Egﬁ ;_ \ KW -...-.E 2 |==Pu1 k]
Mamow BusZ ZEE S B 58 | o Kwig (==l 5 0 |- pus @
------------------- - SCL HWIT | - PJT
Intamal Logic 2.5V "0 Dirivear 5W
f— g - P PO | i)
VES12 vasy M KW =] = PP1
1 1 PWME e P - PP2
_ O i KWP2 [l T [0 == FP3
_ AD Converter BV & P4 KP4 |mmf B [0 e PP
PLL 2.8W Voltage Aegulator Refarance PG KPS (=] = PPS
VDDPLL VDDA — PG KWPE | - PPE
VESPLL — VESA PAMT KAPT [- PP
= = MISO FWHD [-+ PHD
\ : MOS| KWHA |+ == PH1
Voltage Regulator 5V & 1O
'.?DDH g_. SFi SCK FWH2 (=) == PH2
=5R 55 KWH3 (== | T [==PH3
R] kW4 |=e] O | | PH
sprz Mos! KWHS |== s PHS
SCK KWHE [- PHE
== KWH7 || e PHT

Ports on the HC12

* How do you get data out of computer to the outside?
* A Port on the HC12 is a device that the HC12 uses to control some hardware.
* Many of the HC12 ports are used to communicate with hardware outside of the HC12.
» The HC12 ports are accessed by the HC12 by reading and writing memory locations
$0000 to SO3FF.
» Some of the ports we will use in this course are PORTA, PORTB and PTH:

* PORTA is accessed by reading and writing address $0000.

* PORTB is accessed by reading and writing address $0001.

* PTH is accessed by reading and writing address $0260.
* You can connect signals from the outside by connecting wires to pins 57 to 64
(PORTA), 24 to 31 (PORTB), and to pins 32 to 35 and 49 to 52 (PTH).

— On the MiniDRAGON+ EVB, a seven-segment LED is connected to PTH.

8 E =
Zpls
HEn —ESZ22g
= ﬁ & g R
=g g g =
. ag;ﬁcggé -
= o7 =] £ = = ==
SEEE, (3235 085-n288zsmaig
%‘g%%g -gasasﬁﬁgg%ﬁ%-gg
SEEELBBszo2225585 020054 e
IR EERLSUCECS235853 00500 BRA0
EIPMMIKWPIRPY 1= T TR R RS SRS 222 i &4 VRH
SCKAPHMEZKWPZPRL |2 &5 vooa
MOSHFHMIKHPT PR —| 3 82| PAD{SAMSETRIGH
MISCHPAMOKIPIFRD —| 4 61| FADTANOTET RIGD
XADDRITPKS |5 80— PAD14ANI4
XADDRIGTK2 —| & 75 FADA NG
XADDRISPKI |7 75 pAD13AMIA
XADDRIATKD —| & 77| FADISANGS
KCUPT | @ 76| PAD1ZIANI2
KCUPTE—| 10 75— FADI4IND
KCZPT2 | 74| PAD{4ANI
KCHPTI | 42 75— FADI3MNGE
VDDt | 13 72| PADADAMD
Vst —{ 14 MCES120T255MCaS1 24256/ 71— PDIBNCE
%m 12 MCes120U256MCa51 2DG 255 Sa' gﬂﬁ:ﬁ?
KCEPTE | 17 65 pADCBANDR
KCTIPTT | 8 67| FADXANIG
XADDR{SPKE | 10 85— vssz
XADDR{&PK4 —| 20 €51 VD02
KWJRI | 24 &4| 1 FATIDDR1SDATALS
KWJOPJD —| 22 63 FAEMDDR1ADATAL 4
MODG TAGATBKGD | 23 €2 FASADDR13ATAL 3
ADCRODATADPED —| 24 61| FAARDDR12DATA 2
ADCRADATA P | 25 60{— FARDDR 1 CATA 1
ADCRADATAZPE —| 25 55— FAZRDDR1GDATAL D
ADCRADATAIPES —| 27 55| FA1DDRGDATA
ADTPADHTMPES {28, o e BB sy 9s S g mn o3| POAIRE0ARS
['\—I"‘-WU’.“?I'\-"D'D';". T j‘ = f'?N—DC“)é\I"-‘-:-
4341 PSRRI f
ZESEEESF Pl =R - EEE
SESEEEEELLE EEEE
BEE 3 ==
SEEBGEEEES BEER
oS = 2= = wEE

* When you power up or reset the HC12, PORTA, PORTB and PTH are input ports.
* You can make any or all bits of PORTA, PORTB and PTH outputs by writing a 1 to the
corresponding bits of their Data Direction Registers.
— The Data Direction Register for PORTA is located at memory address $0002. It
is called DDRA. To make all bits of PORTA output, write a $FF to DDRA. To
make the lower four bits of PORTA output and the upper four bits of PORTA
input, write a $OF to DDRA.
— The Data Direction Register for PORTB is located at memory address $0003. It
is called DDRB. To make all bits of PORTB output, write a $FF to DDRB.
— The Data Direction Register for PTH is located at memory address $0262. It is
called DDRH. To make all bits of PTH output, write a $FF to DDRH.
— You can use DBug-12 to easily manipulate the I/O ports on the 68HCS12
— To make PTH an output, use MM to change the contents of address $0262
(DDRH) to an $FF.
— You can now use MM to change contents of address $0260 (PTH), which
changes the logic levels on the PTH pins.
— If the data direction register makes the port an input, you can use MD to display
the values on the external pins.

Using Port A of the 68HC12
To make a bit of Port A an output port, write a 1 to the corresponding bit of DDRA
(address 0x0002).

To make a bit of Port A an input port, write a 0 to the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port.

DDRA7 | DDRA6 | DDRA5S | DDRA4 | DDRA3 | DDRA2 | DDRA1 | DDRAO
Reset 0 0 0 0 0 0 0 0 $0002

For example, to make bits 3—0 of Port A input, and bits 7—4 output, write a OxF0 to
DDRA.

To send data to the output pins, write to PORTA (address 0x0000). When you read from
PORTA input pins will return the value of the signals on them (0 0 0V, 1 I 5V); output
pins will return the value written to them.

|PA7 |PA6 |PA5 |PA4 |PA3 |PA2 |PA1 |PAO |
Reset - - - - - - - - $0000

Port B works the same, except DDRB is at address 0x0003 and PORTB is at address
0x0001.

;A simple program to make PORTA output and PORTB input,
sthen read the signals on PORTB and write these values
sout to PORTA

prog: equ $1000
PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03
org prog

movb #S$ff,DDRA ; Make PORTA output
movb #$00,DDRB , Make PORTB input

ldaa PORTB
staa PORTA
swi

* Because DDRA and DDRB are in consecutive address locations, you could make
PORTA and output and PORTB and input in one instruction:

movw #$ff00,DDRA ; FF"-> DDRA, 00 -> DDRB

GOOD PROGRAMMING STYLE
1. Make programs easy to read and understand.
» Use comments
* Do not use tricks
2. Make programs easy to modify
* Top-down design
* Structured programming — no spaghetti code
* Self contained subroutines
3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.
* Draw a picture

2. Think about how to process data
* Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to individual instructions
* Top-down design

4. Use names instead of numbers

Another Example of an Assembly Language Program

» Add the odd numbers in an array of data.

* The numbers are 8-bit unsigned numbers.

¢ The address of the first number is $E000 and the address of the final number is $EO1F.
* Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

SUM ODD NUMBERS IN ARRAY FROM 0xE000 TO 0xEO01f
Treat numbers as 8—bit unsigned numbers

4 0xE000
5
1
8
6
11

OxEO1F

Start with the big picture

0xE000

i
QN[O = ||~

[
—_

OxEOIF

Add details to blocks

4| 0xE000
5
STRRT Init 1
Y Y 2
A 6
Y Y 1
Ena
Y y
e
[cna
0xEO1F

Decide on how to use CPU registers for processing data

Pointer: X or Y — Let us use X

Sum:

8-bit or 16—bit register
CanuseDorY

No way to add 8—bit number to D
Can use ABY to add 8—bit number to Y

Add more details: Expand another block

;.:Tm X [

H |
AN ||~ ||~

STRRT Init
* * Yas =
Init Acdr - 11
Pointer Ho
* + Acid Tham
Prooass to Sum
| Pxoosss ‘0 > sun|
enmall

Ho

More details: How to tell if number is odd, how to tell when done

How to test if even?
LSB = 0 — check LSB of memory
BRCLR 0,X,$01,even

How to check if more to do?

If X < 0xE020, more to do.
CMPX #$E020
BLO or BLT loop?

Address in unsigned, use unsigned compare

BLO loop

Convert blocks to assembly code

0xE000

OxEO1F

Prooess X 0xE000

:
:
&
:

. Addr —>
Init . 10K JARRRY
- . I
+ + Everr? BRCIR O,X, 501, even
e ‘u - m| Y #o
g -
ANSesar baona) (5= o
e
! Pointer o
Done
Yes Mome QEK HAFEAY FND 0xEO1F
to don Eo logp

Done

.E

Write program
;Program to sum odd numbers in a memory array

prog: equ $1000
data: equ $2000
array: equ S$E000
len: equ $20

org prog

1dx #array ; initialize pointer

Idy #0 s initialize sum to 0
loop: Idab 0,x ; get number

brelr 0,x,$01,even ; skip if even

aby ; odd - add to sum
even: inx ; point to next entry

cpx #(array+len) , more to process?

blo loop ; if so, process

sty answer ; done -- save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for answer

* Important: Comment program so it is easy to understand.

The assembler output for the above program

* Note that the assembler output shows the op codes which the assembler generates for
the HC12.

* For example, the op code for brclr 0,x,$01,even is 0f 00 01 02

asl2, an absolute assembler for Motorola MCU's, version 1.2e

1000 prog: equ $1000

2000 data: equ $2000

e000 array:equ SE000

0020 len: equ $20

1000 org pProg

1000 ce €0 00 1ldx #array ; initialize pointer
1003 cd 00 00 1dy #0 ; initialize sum to O
1006 e6 00 loop: ldab 0,x ; get number

1008 0f 00 01 02 brclr 0,x,$01,even; skip if even

100c 19 ed aby ; odd - add to sum
100e 08 even: inx ; point to next entry
100f 8e e0 20 cpx # (array+len); more to process?
1012 25 f2 blo loop ; 1f so, process

1014 7d 20 Q0 sty answer ; done -- save answer
1017 3f swi

2000 org data

2000 answer: ds.w 1 ; reserve 16-bit word

; for answer

Executed: Sun Jan 20 10:00:02 2008
Total cycles: 36, Total bytes: 24
Total errors: 0, Total warnings: O

Here is the .s19 file:

S011000046696C653A2074657374332E730A76
S1131000CEEOOOCDOO0O0OE6OOOF00010219EDO88ECD
S10B1010E02025F27D20003FE1L

S9030000FC

