

• More on programming in assembly language
• Introduction to Ports on the HC12
• Huang Sections 7.1 through 7.5

o Good programming style
o Tips for writing programs
o Input and Output Ports

 Simplified Input Port
 Simplified Output Port

o Ports on the HC12
 PORTA, PORTB, DDRA, DDRB
 A simple program to use PORTA and PORTB

o Subroutines and the Stack
o An example of a simple subroutine
o Using a subroutine with PORTA to make a binary counter on

LEDs

THE STACK AND THE STACK POINTER
• Sometimes it is useful to have a region of memory for temporary storage, which does
not have to be allocated as named variables.
• When we use subroutines and interrupts it will be essential to have such a storage
region.
• Such a region is called a Stack.
• The Stack Pointer (SP) register is used to indicate the location of the last item put onto
the stack.
• When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.
• When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.
• Before you can use a stack you have to initialize the Stack Pointer to point to one
value higher than the highest memory location in the stack.
• For the HC12 use a block of memory from about $3B00 to $3BFF for the stack.
• For this region of memory, initialize the stack pointer to $3C00.
• Use the LDS (Load Stack Pointer) instruction to initialize the stack point.
• The LDS instruction is usually the first instruction of a program which uses the stack.
• The stack pointer is initialized only one time in the program.
• For microcontrollers such as the HC12, it is up to the programmer to know how much
stack his/her program will need, and to make sure enough space is allocated for the stack.

If not enough space is allocated the stack can overwrite data and/or code, which will
cause the program to malfunction or crash.

The stack is an array of memory dedicated to temporary storage

↑
0x3AF5
0x3AF6
0x3AF7

.

.

.

0x3BFF
0x3B00
0x3B01
0x3B02

↓

SP points to the location last item
placed in block

SP decreases when you put an item
on stack

SP increases when you pull item
from stack

For HC12 EVBU, use 0x3C00 as
initial SP:

STACK: EQU $3C00
 LDS #STACK

An example of some code which used the stack

↑
0x3BF5
0x3BF6
0x3BF7

.

.

.

0x3BFC
0x3BFD
0x3BFE
0x3BFF
0X3C00 ↓

Stack Pointer

Initialize ONCE before first use (LDS
#STACK)

Points to last used storage location
Decreases when you put something on
stack
Increases when you take something off
stack

STACK: EQU $3C00
 org 0x1000
 lds #STACK
 ldaa #$2e
 ldx #$1254
 psha
 pshx
 clra
 ldx #$ffff

 CODE THAT USES A & X

 pulx
 pula

Subroutines
• A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.
• Example:
– Math functions, such as square root
• Because a subroutine can be called from different places in a program, you cannot get
out of a subroutine with an instruction such as jmp label because you would need to
jump to different places depending upon which section of code called the subroutine.
• When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.
– This is done automatically for you when you get to the subroutine by using the JSR
(Jump to Subroutine) or BSR (Branch to Subroutine) instruction. This instruction pushes
the address of the instruction following the JSR/BSR instruction on the stack.
• After the subroutine is done executing its code it needs to return to the address saved on
the stack.
– This is done automatically for you when you return from the subroutine by using the
RTS (Return from Subroutine) instruction. This instruction pulls the return address off
of the stack and loads it into the program counter, so the program resumes execution of
the program with the instruction following that which called the subroutine.
The subroutine will probably need to use some HC12 registers to do its work. However,
the calling code may be using its registers for some reason
— The calling code may not work correctly if the subroutine changes the values of the
HC12 registers.
– To avoid this problem, the subroutine should save the HC12 registers before it uses
them, and restore the HC12 registers after it is done with them.

Example of a subroutine to delay for a certain amount of time

delay: ldaa #250
loop2: ldx #800
loop1: dex

 bne loop1
 deca
 bne loop2
 rts

• Problem: The subroutine changes the values of registers A and X

• To solve, save the values of A and X on the stack before using them, and
restore them before returning.

delay: psha ; Save registers used by sub on stack
 pshx
 ldaa #250

loop2: ldx #800
loop1: dex

bne loop1
deca
bne loop2
pulx ; Restore registers in opposite order
pula
rts

;
; The program uses a subroutine to insert a delay
; between counts

prog: equ $1000
STACK: equ $3C00 ; Stack ends of $3BFF
PORTA: equ $0000
PORTB: equ $0001
DDRA: equ $0002
DDRB: equ $0003

org prog

lds #STACK ; initialize stack pointer
ldaa #$ff ; put all ones into DDRA
staa DDRA ; to make PORTA output
clr PORTA ; put $00 into PORTA

loop: jsr delay ; wait a bit
inc PORTA ; add one to PORTA
bra loop ; repeat forever

; Subroutine to wait for a few milliseconds

delay: psha
pshx
ldaa #250

loop2: ldx #800
loop1: dex

bne loop1
deca
bne loop2
pulx
pula
rts

JSR and BSR place return address on stack
RTS returns to instruction after JSR or BSR

3c00 STACK: EQU $3C00
1000 ORG $1000

1000 cf 3c 00 LDS #STACK
1003 16 10 07 JSR MY_SUB
1006 3f SWI
1007 ce 12 34 MY_SUB: LDX #$1234
100a 3d RTS

Another example of using a subroutine

; Program fragment to write the word "hello" to the
; HC12 serial port

ldx $str
loop: ldaa 1,x+ ; get next char

beq done ; char == 0 ⇒ no more
jsr putchar
bra loop
swi

str: dc.b "hello"
fc.b $0A,$0D,0 ; CR LF
.
.
.

putchar: … ; put character into the serial port

Here is the complete program to write a line to the screen:

prog: equ $1000
data: equ $2000
stack: equ $3c00

org prog
lds #stack
ldx #str

loop: ldaa 1,x+ ; get next char
beq done ; char == 0 ⇒ no more
jsr putchar
bra loop

done: swi
putchar: brclr $00CC,$80,putchar ; check for SCI port ready

staa $00CF ; put character onto SCI port
rts

org data
str: fcc "hello"

dc.b $0a,$0d,0 ; CR LF

Using DIP switches to get data into the HC12
• DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

• To use DIP switches, connect one end of each switch to a resistor
• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an input port on the HC12

• When the switch is open, the input port sees a logic 1 (+5 V)
• When the switch is closed, the input sees a logic 0 (0 V)

Looking at the state of a few input pins
• Want to look for a particular pattern on 4 input pins
– For example want to do something if pattern on PB3-PB0 is 0110
• Don’t know or care what are on the other 4 pins (PB7-PB4)
• Here is the wrong way to doing it:

ldaa PORTB
cmpa #%0110
beq task

• If PB7-PB4 are anything other than 0000, you will not execute the task.
• You need to mask out the Don’t Care bits before checking for the pattern on the bits
you are interested in

ldaa PORTB
anda #%00001111
cmpa #%00000110
beq task

• Now, whatever pattern appears on PB7-4 is ignored

Using an HC12 output port to control an LED
• Connect an output port from the HC12 to an LED.

Making a pattern on a seven-segment LED
• Want to generate a particular pattern on a seven-segment LED:

• Determine a number (hex or binary) which will generate each element of the pattern
– For example, to display a 0, turn on segments a, b, c, d, e and f, or bits 0, 1, 2, 3, 4 and
5 of PTH. The binary pattern is 0011 1111, or $3f.
- The new board uses a common anode seven-segment LED. To display a 0, you need to
use the binary pattern 1100 0000, or $C0.
– To display 0 2 4 6 8, the hex numbers are $C0, $A4, $99, $82, $80.
• Put the numbers in a table
• Go through the table one by one to display the pattern
• When you get to the last element, repeat the loop

Flowchart to display a pattern of lights on a set of LEDs

; Program using subroutine to make a time delay
prog: equ $1000
data: equ $2000
stack: equ $3C00
PTH: equ $0260
DDRH: equ $0262

org prog
lds #stack ; Initialize stack pointer
ldaa #$ff ; Make PTH output
staa DDRH ; 0xFF -> DDRH

l1: ldx #table ; Start pointer at table
l2: ldaa 1, x+ ; Get value; point to next

staa PTH ; Update LEDs
jsr delay ; Wait a bit
cpx #table_end ; More to do?
bls l2 ; Yes, keep going through table
bra l1 ; At end; reset pointer

delay: psha
pshx
ldaa #250

loop2: ldx #8000

C0
A4
99
82
80

loop1: dex
bne loop1
deca
bne loop2
pulx
pula
rts

org data
table: dc.b $C0

dc.b $A4
dc.b $99
dc.b $82

table_end: dc.b $80

