* More on programming in assembly language
- Introduction to Ports on the HC12
- Huang Sections 7.1 through 7.5
o Good programming style
o Tips for writing programs
o Input and Output Ports
= Simplified Input Port
= Simplified Output Port
o Ports on the HC12
= PORTA, PORTB, DDRA, DDRB
= A simple program to use PORTA and PORTB
o Subroutines and the Stack
o An example of a simple subroutine
o Using a subroutine with PORTA to make a binary counter on
LEDs

THE STACK AND THE STACK POINTER

» Sometimes it is useful to have a region of memory for temporary storage, which does
not have to be allocated as named variables.

* When we use subroutines and interrupts it will be essential to have such a storage
region.

* Such a region is called a Stack.

* The Stack Pointer (SP) register is used to indicate the location of the last item put onto
the stack.

* When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.

* When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.

* Before you can use a stack you have to initialize the Stack Pointer to point to one
value higher than the highest memory location in the stack.

* For the HC12 use a block of memory from about $3B00 to $3BFF for the stack.

* For this region of memory, initialize the stack pointer to $3C00.

* Use the LDS (Load Stack Pointer) instruction to initialize the stack point.

» The LDS instruction is usually the first instruction of a program which uses the stack.

* The stack pointer is initialized only one time in the program.

* For microcontrollers such as the HC12, it is up to the programmer to know how much
stack his/her program will need, and to make sure enough space is allocated for the stack.

If not enough space is allocated the stack can overwrite data and/or code, which will
cause the program to malfunction or crash.

The stack is an array of memory dedicated to temporary storage

0x3AF5
0x3AF6
0x3AF7

O0x3BFF
0x3B00
0x3B01
0x3B02

SP points to the location last item
placed in block

SP decreases when you put an item
on stack

SP increases when you pull item
from stack

For HC12 EVBU, use 0x3C00 as
initial SP:

STACK: EQU $3C00
LDS #STACK

sp

PC

CCR

An example of some code which used the stack
Stack Pointer

Initialize ONCE before first use (LDS

#STACK)
T
0x3BF5 Points to last used storage location
0x3BF6 Decreases when you put something on
0x3BE7 stack
Increases when you take something off
stack
STACK: EQU $3C00
org 0x1000
lds #STACK
0x3BFC Idaa #$2e
Ox3BFD ldx #$1254
0x3BFE psha
0x3BFF pshx
0X3C00 l clra
Idx #Sffff

CODE THAT USES A & X

pulx
pula

]

x| |

sp| ‘

PSHA

Push A onto Stack PS H A

Operation: (SP) - 50001 = 5P
(Al= Mgp,
Description: Stacks the content of accumulator A. The stack pointer is decremented
by one. The content of A is then stored at the address the SP points to.
FPush instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complemeantary pull
instructions can be used o restore the saved CPU registers just hefore
returning from the subroutine.
§ X H I N Z WV cC
Access Detail
Source Form Address Object Code
Mode HCS12 MBEHC12
PSHA INH 36 0= [+

PSHX

Push Index Register X onto Stack PS HX

Operation: (SP)- 50002 = 5P
Xy KL = Mygpy - Migpaq
Description: Stacks the content of index register X. The stack pointer is decremented
by two. The content of X is then stored at the address to which the 5P
points. After PSHX executes, the SP points to the stacked value of the
high-order half of X.
Fush instructions are commonly used to save the contents of one or
maore CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU ragisters just hefore
returning from the subroutine.
§ X H I N Z V C
Access Detail
Source Form Address Ohject Code
Mode HCS12 MEBHC 12
PSHX INH 34 03 os

PULA

Pull A from Stack

PULA

Operation: [M(SPJ): A
(SP) + §0001 = 5P
Description: Accumulator A is loaded from the address indicated by the stack pointer.
The SF is then incremented by one.
Full instructions are commonly used at the end of a subroutine, io
restore the contants of CPU registers that were pushed onto the stack
hefore subroutine execution.
. 5 X H N Z V
CCR Details: | | | | | | | | |
A Detail
Source Form Address Object Code ceess mel
Mode HCS12 MBSHC12
PULA INH 32 wEQ w0

PULX

Pull Index Register X from Stack

PULX

Operation: [MI:SF':I: MI:SF'+1:I:] = Jﬂ_ : XL
(SP) + 0002 = 3P
Description: Index register X is loaded from the address indicated by the stack
pointer. The SP is then incrementad by two.
Fullinstructions are commonly used at the end of a subroutine o restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.
. S X H N Z V
CCR Details: | | | | | | | | |
A Detail
Source Form Address Object Code ceomss et
Mode HCS12 MESHC 12
PULX IMH a0 L85 34 UED

Subroutines

* A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.

» Example:

— Math functions, such as square root

* Because a subroutine can be called from different places in a program, you cannot get
out of a subroutine with an instruction such as jmp label because you would need to
jump to different places depending upon which section of code called the subroutine.

* When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.

— This is done automatically for you when you get to the subroutine by using the JSR
(Jump to Subroutine) or BSR (Branch to Subroutine) instruction. This instruction pushes
the address of the instruction following the JSR/BSR instruction on the stack.

* After the subroutine is done executing its code it needs to return to the address saved on
the stack.

— This is done automatically for you when you return from the subroutine by using the
RTS (Return from Subroutine) instruction. This instruction pulls the return address off
of the stack and loads it into the program counter, so the program resumes execution of
the program with the instruction following that which called the subroutine.

The subroutine will probably need to use some HC12 registers to do its work. However,
the calling code may be using its registers for some reason

— The calling code may not work correctly if the subroutine changes the values of the
HC12 registers.

— To avoid this problem, the subroutine should save the HC12 registers before it uses
them, and restore the HC12 registers after it is done with them.

JSR

Operation:

Description:

CCR Details:

Jump to Subroutine J S R

(SP) - 50002 = 3P
RTNH 1 RTN_ = M.:S:v: 1 N‘CSF’ 1)
Subroutine Address = FC

Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction following the
J3R as a return address.

Decrementis the SP by two to allow the two bytes of the return address
to be stacked.

Stacks the return address. The SP points to the high order byte of the
return address.

Calculates an effective address according to the rules for extended,
direct, or indexed addressing.

Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

Access Detail
Source Form A:‘::L:E Object Code

HCS12 MEEHC12
JSR oprBs DIR 17 dd SFEP PFF3
JSR opria EXT lé hh 11 SFEP PFF3
JSR oprxl_xyap 10 15 =b FEE3 PEEZ
JSR oprx8, xyap D1 15 ub £f FEE3 PEEZ
JSR oprxi6 xyap ID¥2 15 ub == ££ fEEFS fPEF3
JSR [D,xyzp] [D.IDx] 15 =k SIEFPES £IZFFEZ
JSR [opr 6 xyep] [Dx2] 15 ub =e ££ SIfDPEP3 £ISEEES

RTS

Operation:

Description:

CCR Details:

Return from Subroutine RTS

[MtSF‘J: MI:SF'*'IJ) = PC|_ : PCL, (SP) + 50002 = 5F

Restores context at the end of a subroutine. Loads the program counter
with a 16-bit value pulled from the stack and increments the stack pointer
by two. Program execution continues at the address restored from the
stack.

Access Detail
Source Form A:‘dr:ss Object Code
cde HCS12 MGBHC12
RTS INH 3D UEEEE UEEET

Example of a subroutine to delay for a certain amount of time

delay: ldaa #250
loop2: 1ldx #800

loopl: dex
bne loopl
deca
bne loop2
rts

* Problem: The subroutine changes the values of registers A and X

* To solve, save the values of A and X on the stack before using them, and
restore them before returning.

delay: psha ; Save registers used by sub on stack
pshx
Idaa #250
loop2: Idx #800
loop1: dex
bne loopl
deca
bne loop2
pulx ; Restore registers in opposite order
pula
rts

; The program uses a subroutine to insert a delay
; between counts

prog:

STACK:
PORTA:
PORTB:

DDRA:
DDRB:

loop:

equ $1000

equ $3C00 ; Stack ends of $3BFF
equ $0000

equ $0001

equ $0002

equ $0003

org prog

Ids #STACK ; initialize stack pointer
Idaa #$ff ; put all ones into DDRA
staa DDRA ; to make PORTA output
clr PORTA ; put $00 into PORTA
jsr delay ; wait a bit

inc PORTA ; add one to PORTA

bra loop ; repeat forever

; Subroutine to wait for a few milliseconds

delay:

loop2:
loop1:

psha
pshx
ldaa
1dx
dex
bne
deca
bne
pulx
pula
rts

#250
#3800

loop1

loop2

JSR and BSR place return address on stack
RTS returns to instruction after JSR or BSR

3c00 STACK: EQU $3C00
1000 ORG $1000
1000 cf 3c 00 LDS #STACK
1003 16 10 07 JSR MY SUB
1006 3f SWI
1007 ce 12 34 MY SUB: LDX #$1234
100a 3d RTS
A B
D |
x| |
v |
sp‘ ‘
PC‘ ‘

Another example of using a subroutine

; Program fragment to write the word "hello" to the
; HC12 serial port

ldx $str
loop: Idaa 1,x+ ; get next char
beq done ; char == 0[] no more
jsr putchar
bra loop
swi
str: de.b "hello"

fcb $0A,S0D,0 : CRLF

putchar: ; put character into the serial port

Here is the complete program to write a line to the screen:

prog:
data:
stack:

loop:

done:

putchar:

str:

equ $1000
equ $2000
equ $3c00
org prog
Ids #stack
1dx #str
Idaa 1,x+ ; get next char
beq done ; char == 0 [J no more
jsr putchar
bra loop
swi
brelr $00CC,$80,putchar ; check for SCI port ready
staa $SO00CF ; put character onto SCI port
rts
org data
fee "hello"
de.b $0a,$0d,0 ; CRLF

Using DIP switches to get data into the HC12
 DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

— — — — — - ™ —

P
L
A
/
s
;I; ‘

5V

» To use DIP switches, connect one end of each switch to a resistor
* Connect the other end of the resistor to +5 V

* Connect the junction of the DIP switch and the resistor to an input port on the HC12

+5V +5V +5V +5v

S —
O 0 ::J__:iPBO

» When the switch is open, the input port sees a logic 1 (+5 V)
* When the switch is closed, the input sees a logic 0 (0 V)

Looking at the state of a few input pins

* Want to look for a particular pattern on 4 input pins

— For example want to do something if pattern on PB3-PB0 is 0110
* Don’t know or care what are on the other 4 pins (PB7-PB4)

* Here is the wrong way to doing it:

ldaa PORTB
cmpa #%0110
beq task

« [f PB7-PB4 are anything other than 0000, you will not execute the task.
* You need to mask out the Don’t Care bits before checking for the pattern on the bits
you are interested in

Idaa PORTB
anda #%00001111
cmpa #%00000110
beq task

» Now, whatever pattern appears on PB7-4 is ignored

Using an HC12 output port to control an LED
* Connect an output port from the HC12 to an LED.

Making a pattern on a seven-segment LED
» Want to generate a particular pattern on a seven-segment LED:

* Determine a number (hex or binary) which will generate each element of the pattern

— For example, to display a 0, turn on segments a, b, c, d, e and f, or bits 0, 1, 2, 3, 4 and
5 of PTH. The binary pattern is 0011 1111, or $3f.

- The new board uses a common anode seven-segment LED. To display a 0, you need to
use the binary pattern 1100 0000, or $CO.

—To display 0 2 4 6 8, the hex numbers are $CO0, $A4, $99, §82, $80.

* Put the numbers in a table

* Go through the table one by one to display the pattern

* When you get to the last element, repeat the loop

Flowchart to display a pattern of lights on a set of LEDs

table

table end

A4
99
82
80

CO - X

START

ldaa
stas

Lok
ldaa
staa
inx
S ':px
X < end? bls
____________J bra

; Program using subroutine to make a time delay

prog:
data:
stack:
PTH:
DDRH:

11:
12:

delay:

loop2:

equ $1000
equ $2000
equ $3C00
equ $0260
equ $0262
org prog
Ids #stack
Idaa #$ff
staa DDRH
1dx #table
Idaa 1, x+
staa PTH
jsr delay
cpx #table end
bls 12
brall
psha
pshx
Idaa #250
1dx #8000

; Initialize stack pointer
; Make PTH output

; OxFF -> DDRH

; Start pointer at table

; Get value; point to next
; Update LEDs

; Wait a bit

; More to do?

#5E£
DDRA

#table

PORTA

gtabkle_end
iz

11

; Yes, keep going through table

; At end; reset pointer

loop1:

table:

table_end:

dex
bne
deca
bne
pulx
pula
rts

org
dc.b
dc.b
dc.b
dc.b
dc.b

loop1

loop2

data
$Co
$A4
$99
$82
$80

