

Course Overview

URL: http://www.ee.nmt.edu/~erives/classes.php

Texts: Freescale Databooks on the MC9S12

Recommended: The HCS12/9S12: An Introduction to Software and

Interfacing, 2nd Edition by Han-Way Huang

Grading:

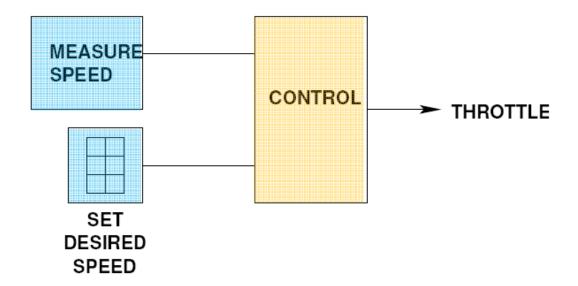
• 10%: Homework.

• 10%: Quizzes

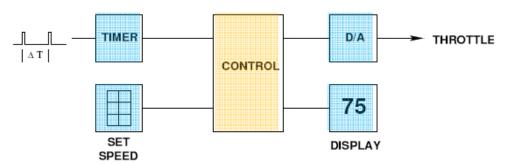
• 60%: Three midterms exams

• 20%: Final exam

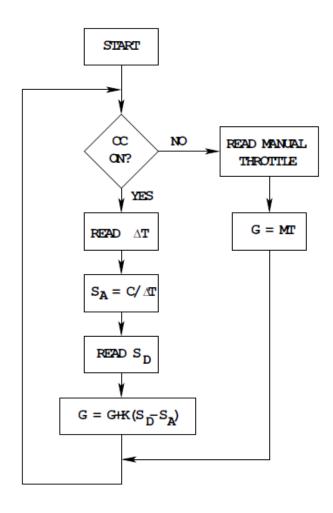
- Introduction to the MC9S12 Microcontroller
- Binary and Hexadecimal Numbers
- Assembly Language Programming
- C Language Programming
- Introduction to MC9S12 Internal Peripherals
 - The MC9S12 Timer Subsystem
 - Interrupts using the Timer Subsystem
 - The MC9S12 Pulse Width Modulator Subsystem
- The MC9S12 Expanded Mode
 - Address and Data Buses and Timing
 - Adding Memory and External Peripherals
 - Interfacing to the MC9S12
- More MC9S12 Internal Peripherals
 - The A/D Converter Subsystem
 - The Serial Peripheral Interface
 - The Serial Communications Interface
- Using the MC9S12 in a Control Application


Lab Overview

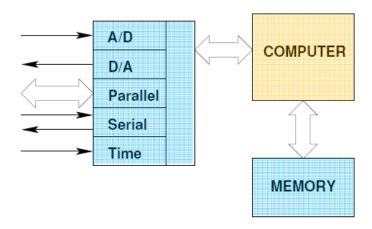
- The lab meets Monday and Wednesday afternoons. No labs this week.
- Lab handouts will be posted starting the following week.
- The 9S12 evaluation kits will be passed out in lab next week.
- You need to bring a bound lab notebook to the first lab.
- There will be a prelab for each lab. This must be done and turned in at the start of your lab section. The lab TA will verify that you have completed the prelab.
- Be prepared to answer questions about the pre-lab when you come to lab.
- If you do not complete the prelab before coming to lab, you will lose 70% (TBD) of the points for that lab.


- Introduction to Microprocessors and Microcontrollers.
 - Course Overview
 - o Cruise Control Block Diagrams and Flowchart
 - o Block Diagrams of Simple Microprocessor and Microcontroller
 - Harvard architecture and Princeton architecture microprocessor block diagrams
 - o Memory map for a Princeton architecture microprocessor

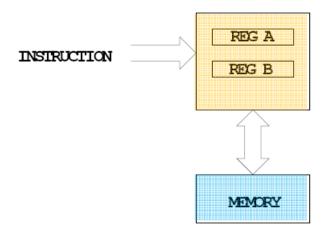
AUTOMOBILE CRUISE CONTROL



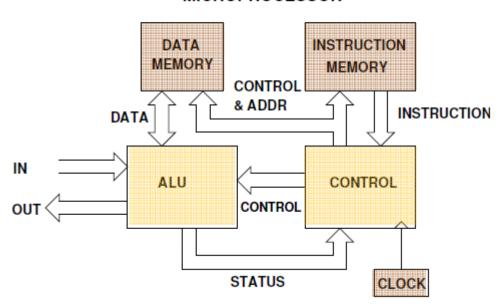
AUTOMOBILE CRUISE CONTROL

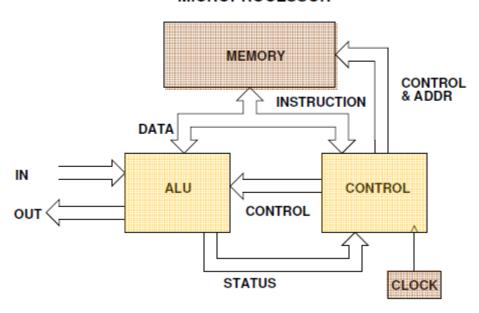

 ΔT = time for one revolution of wheel.

Speed = $C/\Delta T$, where C is the circumference of the wheel

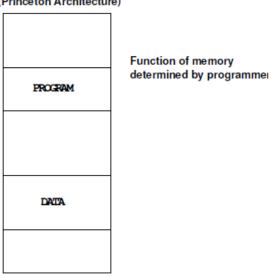


MICROCONTROLLER


SIMPLE MICROPROCESSOR


INSTRUCTION	ACTION
18 06	$(A) + (B) \Rightarrow A$
87	$0 \Rightarrow A$
5A 05	$(A) \Rightarrow Address 5$

MICROPROCESSOR



PRINCETON (VON NEUMAN) ARCHITECTURE MICROPROCESSOR

MEMORY MAP (Princeton Architecture)

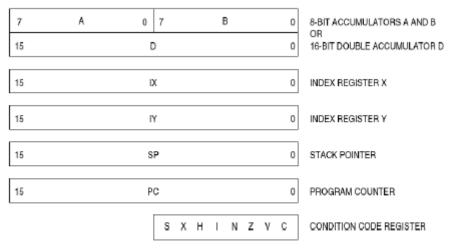


Figure 2-1. Programming Model

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

Convert Binary to Decimal

1111011 2

$$1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

 $1 \times 64 + 1 \times 32 + 1 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1$

123 10

Convert Hex to Decimal

82D6₁₆

$$8 \times 16^3 + 2 \times 16^2 + 13 \times 16^1 + 6 \times 16^0$$

3349410