Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Interrupts and the Timer Overflow Interrupts
Huang Sections 6.1-6.4

Using the Timer Overflow Flag to interrupt a delay
Introduction to Interrupts

How to generate an interrupt when the timer overflows
How to tell the MC9S12 where the ISR is located

Using interrupts on the HC12

The MC9S12 registers and stack when a TOF interrupt is
received

The MC9S12 registers and stack after a TOF interrupt is
received

Interrupt vectors for the MC9S12

Using interrupts on the MC9S12: Assembly and C

What Happens When You Reset the HCS12?

* What happens to the HCS12 when you turn on power or push the reset button?

e How does the HCS12 know which instruction to execute first?

¢ On reset the HCS12 loads the PC with the address located at address OxFFFE and
O0xFFFF.

* Here is what is in the memory of our MC9S12:

0

2 |3 |4 |5 |6 |7 |8 9 |[A B [C|D

FFFO0

F6

EC|F6 |FO |F6 |F4 |F6 | F8 | F6 | FC | F7 | 00 | F7 | 04

FO

00

* On reset or power-up, the first instruction your MC9S12 will execute is the one located
at address 0xF000.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The MC9S12 Timer
* The MC9S12 has a 16-bit free-running counter (timer).
* The MC9S12 allows you to slow down the clock which drives the counter.

* You can slow down the clock by dividing the 24 MHz clock by 2, 4, 8, 16, 32, 64 or
128.

* You do this by writing to the prescaler bits (PR2:0) of the Timer System Control
Register 2 (TSCR2) Register at address 0x004D.

2.7307 ms will be too short if you want to see lights flash. You can slow down clock by
dividing it before you send it to the 16—bit counter. By setting prescaler bits PR2, PR1,
PRO of TSCR2 you can slow down the clock:

PR Divide Freq Overflow Rate
000 1 24 MHz 2.7307 ms

001 2 12 MHz 5.4613 ms

010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms
110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

To set up timer so it will overflow every 87.3813 ms:

bset TSCR1,#$80 TSCR1 =TSCRI1 | 0x80;
Idaa #$05 TSCR2 = 0x05;
staa TSCR2

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

TIMER OVERFLOW INTERRUPT

o

TOF
Faad

(BT of TFLGZ addr [mdF)

{BRT o TSCR1, addr M 45

PR[2-0]

(Ets 2-0 of TSCRZ addr 4l TOF
Writs:

(ERT of TFLGE addr DudiF)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using the Timer Overflow Flag to implement a delay

* The MC9S12 timer counts at a rate set by the prescaler:

PR2:0 | Divide | Clock Freq Clock Overflow Period
Period

000 1 24 MHZ 0.042 ps 2.73 ms

001 2 12 MHZ 0.083 ps 5.46 ms

010 4 6 MHZ 0.167 ps 10.92 ms

011 8 3 MHZ 0.333 ps 21.85 ms

100 16 1.5 MHZ 0.667 ps 43.69 ms

101 32 750 MHZ 1.333 ps 87.38 ms

110 64 375 MHZ 2.667 us 174.76 ms

111 128 187.5 MHZ 5.333 ps 349.53 ms

* When the timer overflows it sets the TOF flag (bit 7 of the TFLG2 register).

* To clear the TOF flag write a 1 to bit 7 of the TFLG?2 register, and O to all other bits
of TFLG2:

TFLG2 = 0x80;

* You can implement a delay using the TOF flag by waiting for the TOF flag to be set,
then clearing it:

void delay(void)

{
while (TFLG2 & 0x80) ==0) ; /* Wait for TOF */
TFLG2 = 0x80; /* Clear flag */

}

* If the prescaler is set to 010, you will exit the delay subroutine after 10.92 ms have
passed.
Problem: Can’t do anything else while waiting.

Solution: Have timer generate an interrupt. Program can do other things; automatically
switches to service interrupt when interrupt occurs.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

How to generate an interrupt when the timer overflows

VG

ToF
Fead

(BRT of TFLGL addr WdF)

16 B Countar
TONT{ addr Tdd)

Fol o S

PCinck
TEH

CEILT of TRCHRT, addr eds)

|
(Bt 2-0 0l TSCAL, addr W4T

TaF
Wi
(BRT of TRLGL, addr (4 - ~ Imtarmant
TOH 1 15t
TaiR2 O
(BT ol TRCRL addr D (Enali by dgaring | it wih CL gk

(Enabis by s9ting BT ol TSERT)

To generate a TOF interrupt: Inside TOF ISR:

Enable timer (set Bit 7 of TSCR1) Take care of event

Set prescaler (Bits 2:0 of TSCR2) Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Enable TCF interrupt (set Bit 7 of TSCR2) Return with RTI

Enable interrupts (clear I bit of CCR)

#include "derivative.h"

main()
{
DDRB = 0xff; /* Make Port B output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x85; /* Enable timer overflow interrupt, set prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */
enable(); /* Enable interrupts (clear I bit) */
while (1)
{
/* Do nothing */
}
}
interrupt void toi_isr(void)
{
PORTB = PORTB + 1; /* Increment Port B */
TFLG2 = 0x80; /* Clear timer interrupt flag */

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

How to tell the HCS12 where the Interrupt Service Routine (ISR) is located
* You need to tell the HCS12 where to go when it receives a TOF interrupt.
* You do this by setting the TOF Interrupt Vector.

* The TOF interrupt vector is located at 0xFFDE. This is in flash EPROM, and is very
difficult to change — you would have to modify and reload DBug-12 to change it.

* DBug-12 redirects the interrupts to a set of vectors in RAM, from 0x3E00 to
0x3E7F. The TOF interrupt is redirected to 0x3ESE. When you get a TOF interrupt, the
HCS12 initially executes code starting at 0OxXFFDE. This code tells the HCS12 to load the
program counter with the address in Ox3ESE. Because this address in RAM, you can
change it without having to modify and reload DBug-12.

* Because the redirected interrupt vectors are in RAM, you can change them in your
program.

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology

How to Use Interrupts in Assembly Programs

* For our assembler, you can set the interrupt vector by including the file hes12.inc. In
this file, the addresses of all of the 9212 interrupt vectors are defined.

* For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvt:

UserTimerOvf equ $3E5SE

You can set the interrupt vector to point to the interrupt service routine
toi_isr with the Assembly statement:

movw #toi_isr,UserTimerOvf

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

* Here is a program where the interrupt vector is set in the program:

prog:

11:

tol_isr:

include ’derivative.inc’
include "vectors12.inc"

equ $2000
org prog

movw #toi_isr,UserTimerOvf ; Set interrupt vector

movb #$ff, DDRP
bset PTP,#$0f

bset DDRIJ,#$02
belr PTT #$02
movb #$ff, DDRB
movb #$80,TSCR1
movb #$86,TSCR2

movb #$80,TFLG?2
cli

wal
bra Il

inc PORTB
movb #$80,TFLG2
rti

; Port B output

; Turn on timer

; Enable timer overflow interrupt, set prescaler
; so interrupt period is 175 ms

; Clear timer interrupt flag

; Enable interrupts

; Do nothing - go into low power mode */

; Clear timer overflow interrupt flag

* When the MCO9S12 receives a Timer Overflow Interrupt, it finishes the current
instruction, puts return address and all registers on the stack, sets the I bit of the CCR to
disable interrupts, then loads the contents of UserTimerOvf (0x3ESE) into the PC.

* After executing the ISR, the rti instruction pulls the registers off the stack, and loads
the PC with the return address — the program resumes from where it received the
interrupt.

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology

How to Use Interrupts in C Programs

* For our C compiler, you can set the interrupt vector by including the file vectors12.h. In
this file, pointers to the locations of all of the MC9S12 interrupt vectors are defined.

* For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvf:

#define VECTOR_BASE 0x3E00
#define _VEC16(off) *(volatile unsigned short *)(VECTOR_BASE + off*
#define UserTimerOvf _VEC16(47)

The Timer Overflow vector is the 47°th vector , so it is located at

0x3E00 + (47%2) = 0x3E00 + 0x005E = 0x3ESE

You can set the interrupt vector to point to the interrupt service routine toi_isr() with the
C statement:

UserTimerOvf = (unsigned short) &toi_isr;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Here is a program where the interrupt vector is set in the program:

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h" /* SRAM interrupt vector redirect */

#define enable() __asm(cli)
#define disable() __asm(sei)
interrupt void toi_isr(void);

main()
{
DDRB = 0xff; /* Make Port B output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x86; /* Enable timer overflow interrupt, set prescaler */
/*so interrupt period is 175 ms */
TFLG2 = 0x80; /* Clear timer interrupt flag */
UserTimerOvf = (unsigned short) &toi_isr;
enable(); /* Enable interrupts (clear I bit) */
while (1)
{
__asm(wai); /* Do nothing - go into low power mode */
}
}
interrupt void toi_isr(void)
{
PORTB = PORTB+1;
TFLG2 = 0x80; /* Clear timer interrupt flag */
}

* The interrupt keyword tells the compiler to return from the function using the rti
instruction rather than the rts instruction.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using Interrupts on the MC9S12

What happens when the HCS12 receives an unmasked interrupt?
1. Finish current instruction
2. Push all registers onto the stack
3. Set I bit of CCR
4. Load Program Counter from interrupt vector for particular interrupt
Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.
Before using interrupts, make sure to:
1. Load stack pointer

* Done for you in C by the C startup code
2. Write Interrupt Service Routine

* Do whatever needs to be done to service interrupt

* Clear interrupt flag

* Exit with RTI

— Use the INTERRUPT definition in the Gnu C compiler

3. Load address of interrupt service routine into interrupt vector
4. Do any setup needed for interrupt

* For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt.

6. Enable interrupts in general (clear I bit of CCR with cli instruction or enable() function

Can disable all (maskable) interrupts with the sei instruction or disable() function.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

An example of the MC9S12 registers and stack when a TOF interrupt is received

HC42 STATE BEFORE RECEIVING TOF INTERRUPT

A BA ZE
o123
4567
3000
1015
a7

dddddedddag gAY

SRR RN AR IR RS

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

An example of the MC9S12 registers and stack just after a TOF interrupt is
received

* All of the MC9S12 registers are pushed onto the stack, the PC is loaded with
the contents of the Interrupt Vector, and the | bit of the CCR is set

HC12 STATE AFTER RECEIVING TOF INTERRUPT

A A EB B 3B B
IBET o7 O
o123 bt p— =
4567 ¥ 3B AR .1
IR o1
IBET T p— = X
—> 103 BC 3BT 45
2B &7 ¥ \/
17 Fa-n:1 E T
— el
000
E¥DE 10
F¥FDT 79
F¥FDE 10
F¥FD9 &7
F¥TA 10
530 21 52
F¥FIC 10
F¥FID &8
f F¥FLE 10
1 F¥FIF A
FFED 10

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Interrupt vectors for the 68HC912B32
* The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80

to
OxFFFF.

* These vectors are programmed into Flash EEPROM and are very difficult to
change

» DBug12 redirects the interrupts to a region of RAM where they are easy to
change

* For example, when the MC9S12 gets a TOF interrupt:
— It loads the PC with the contents of 0xFFDE and 0xFFDF.
— The program at that address tells the MC9S12 to look at address
0x3ESE and
0x3ESF.

— If there is a 0x0000 at these two addresses, DBugi12 gives an error
stating that the interrupt vector is uninitialized.

— If there is anything else at these two addresses, DBug12 loads this data
into the
PC and executes the routine located there.

— To use the TOF interrupt you need to put the address of your TOF ISR
at addresses 0x3E5SE and 0x3ESF.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Commonly Used Interrupt Vectors for the MC9S12DP256

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

InterTupt Specific General | Normal DBuag-12
Mank Ma=ik Vector Vector
SFI2 SPICR1 (SPIE, SPTIE) T FFBC, FFBED | 3E3C, 3E4D |
ZPI1 EPICRL (SPIE, SPTIE) I FFEE, FFBF | 3E3E, 3JE3F
IIC IBCR (IEIR) I FFCO, FFC1 | 3Ea0, JE41
BOLC DLCBCR (1E) I FFCZ, FFC3 | 3EA2, JE43
CRG Self Clock Mode CRGINT (SCMIE) I FFC4, FFCE | 3E44, JE4LR
CEG Lock CRGINT (LOCKIE) I FFCE, FFCT | 3EAG, JEAT
Pulse Acc B Oherflow FBECTL (FBOVI) I FFCO, FFCO | 3Ead, JELS
Mod Dowm Ctr UnderFlow MOCTL (MCZI) I FFCA, FFCH | 3EAL, 3JE4LH
Port H FTHIF (PTHIE) I FFCC, FFCD | 3EAC, 3JEALD
Port J FTJIF (FTJIE) I FFCE, FFCF | 3EAE, JEALF
ATDA ATDICTLZ (ABCIE) I FFDO, FFD1 | 3EB0, 3JER1
ATDO ATDOCTLE (ASCIE) I FFD2, FFD3 | 3E52, 3JER3
BCI1 ZCICH2 I FFD4, FFDE | 3EB4L, 3JERER
{TIE, TCIE, RIE, ILIE}
BCIO ZODCHT I FFDE, FFDT | 3ER6, 3EET
{TIE, TCIE, RIE, ILIE}
SPIO ZPDCRL (SPIE) I FFDg, FFD 3Es3, 3JERS
Fulse Acc A Edge PACTL (PAI) I FFDA, FFDE | 3E5L, 3JESH
Pulse Acc A Dhverflow PACTL (PAOVI) I FFDC, FFDD | 3EBC, 3JESD
Enk Capt Timer Owerflow TE2CRZ (TOI) I FFDE, FFDF | 3EEE, 3JESEF
Enh Capt Timer Channel 7 TIE (CTI) I FFEO, FFE1 | 3EG60, 3JE&]
Enk Capt Timer Channel B TIE (DEI) I FFEZ, FFE 3EE2, JEE3
Enk Capt Timer Channel & TIE {(CBI) I FFE4, FFEE | 3EB4L, 3JEBE
Enh Capt Timer Channel & | TIE (C4I) 1 FFEG, FFET | 3BEG6, 3JEST
Enk Capt Timer Channel 3 TIE {C3I) I FFEG, FFE ZEE3, JEGS
Enk Capt Timer Channel 2 TIE {(CZI) I FFEA, FFEH | 3EGL, 3JEGH
Enh Capt Timer Channel 1 | TIE (C1I) 1 FFEC, FFED | 3BESC, 3ESD
Enk Capt Timer Channel 0 TIE {Q0I) I FFEE, FFEF | ZEGE, 3JEGF
Eeal Time CRGINT (RTIE) I FFFO, FFF1 | 3EMQ, 3JET1
TEQ IRQCHR (IRGQEN) I FFF2, FFF3 | 3E72, 3JET3
IIRQ {Nome) I FFFF, FFFF | 3E74, 3JETE
SWI [HDII.E} l:H-:':IE] :::E. FEFEY EEE. JETT
Inimplenented Instruction | {Hooe) {Non=) FFFg, FFF9 | 3Efa, 3ETS
COF Failure COPCTL (Non=) FFFA, FFF 3ETA, 3JETH
(CRZ-CRD COF Hate Select)
COP Clock Momiotr Fail FLLCTL (CME, SCHE) (Moo=} FFFC, FFFD | 3E7C, 3JETD
Eemet {Nome) {Haon=) FFFE, FFFF | ZETE, 3JETF

Exceptions on the MC9S12

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Exceptions are the way a processor responds to things other than the normal sequence
of instructions in memory.

* Exceptions consist of such things as Reset and Interrupts.

* Interrupts allow a processor to respond to an event without constantly polling to see
whether the event has occurred.

* On the HCS12 some interrupts cannot be masked — these are the Unimplemented
Instruction Trap and the Software Interrupt (SWI instruction).

* XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X
bit is cleared to enable the XIRQ interrupt, it cannot be set to disable it.

— The XIRQ interrupt is for external events such as power fail which must be
responded to.

* The rest of the HCS12 interrupts are masked with the I bit of the CCR.
— All these other interrupts are also masked with a specific interrupt mask.

— This allows you to enable any of these other interrupts you want.
— The I bit can be set to 1 to disable all of these interrupts if needed.

Using Interrupts on the MC9S12

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

What happens when the MC9S12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most interrupts the

general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI

bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer
* Done for you in C by the CodeWarrior startup code.

2. Write Interrupt Service Routine
* Do whatever needs to be done to service interrupt. Keep it short — do not do
things which take a long time, such as a printf(), or wait for some external event.
* Clear interrupt flag

* Exit with RTI
— Use the @interrupt function of the Cosmic C compiler

3. Load address of interrupt service routine into interrupt vector
4. Do any setup needed for interrupt
* For example, for the TOF interrupt, turn on timer and set prescaler
5. Enable specific interrupt
6. Enable interrupts in general (clear I bit of CCR with cli instruction or enable() function

Can disable all (maskable) interrupts with the sei instruction or disable() function.

