
 EE 308 Spring 2011

• The Real Time Interrupt

• Huang Section 6.6

• CRG Block User Guide
o Exceptions on the 9S12
o Using interrupts on the 9S12
o The Real Time Interrupt on the 9S12

Using Interrupts on the MC9S12

What happens when the MC9S12 receives an unmasked interrupt?

a. Finish current instruction

b. Push all registers onto the stack

c. Set I bit of CCR

d. Load Program Counter from interrupt vector for highest priority interrupt which is
pending

The following (from the MC9S12DP256B Device User Guide) shows the exception
priorities. The Reset is the highest priority, the Clock Monitor Fail Reset the next
hightest, etc.

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.

Before using interrupts, make sure to:

a. Load stack pointer

• Done for you in C by the C startup code

b. Write Interrupt Service Routine

• Do whatever needs to be done to service interrupt

– You cannot pass a variable to an ISR. If the ISR needs to know the value
of a variable used in another part of the program, that variable must be
global
– You cannot return a variable from an ISR to another part of the program.
If the program needs to know the value of a variable set in an ISR, that
variable must be global

• Clear interrupt flag

• Exit with the RTI instruction
– Use the interrupt key word in the CodeWarrior compiler
– Tells compiler to exit function with rti instruction rather than rts
instruction

c. Load address of interrupt service routine into interrupt vector

• E.g., UserTimerOvf = (unsigned short) &toi_isr;

d. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

e. Enable specific interrupt

f. Enable interrupts in general (clear I bit of CCR with cli instruction

Can disable all (maskable) interrupts with the sei instruction.

 EE 308 Spring 2011

• When the MC9S12 is reset, the interrupts are disabled. Some compilers enable
interrupts by default, so your code should turn off interrupts before doing setup.

• Can do this with __asm(sei);

• Can also do the following:

#define disable() __asm(sei)

#define enable() __asm(cli)

and then use more C-like disable(); and enable();

 EE 308 Spring 2011

Example of C program using Timer Overflow Interrupt

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h" /* DBug12 RAM-based interrupt vectors */
#define enable() __asm(cli)
#define disable() __asm(sei)
interrupt void toi_isr(void); /* Function prototype */

void main(void)
{

disable();
DDRB = 0xff; /* Make Port B output */

/* Setup for Timer Overflow Interrupt */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x06; /* Set prescaler so interrupt period is 175 ms */
UserTimerOvf = (unsigned short) &toi_isr;
TSCR2 = TSCR2 | 0x80; /* Enable timer overflow interrupt */
/* Done with setup */

enable(); /* Enable interrupts (clear I bit) */
while (1)
{

__asm(wai); /* Do nothing - go into low power mode */
}

}

interrupt void toi_isr(void)
{

PORTB = PORTB+1;
TFLG2 = 0x80; /* Clear timer interrupt flag */

}

 EE 308 Spring 2011

An example of the MC9S12 registers and stack when a TOF interrupt is received

 EE 308 Spring 2011

An example of the MC9S12 registers and stack just after a TOF interrupt is

received

• All of the MC9S12 registers are pushed onto the stack, the PC is loaded with
the contents of the Interrupt Vector, and the I bit of the CCR is set

 EE 308 Spring 2011

Interrupt vectors for the HCS12

• The interrupt vectors for the MC9S12DG256 are located in memory from 0xFF80 to

0xFFFF.

• These vectors are programmed into Flash EEPROM and are very difficult to change

• DBug12 redirects the interrupts to a region of RAM where they are easy to change

• For example, when the HCS12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.
– The program at that address tells the HCS12 to look at address 0x3E5E and

0x3E5F.
– If there is a 0x0000 at these two addresses, DBug12 gives an error stating that
the
 interrupt vector is uninitialized.
– If there is anything else at these two addresses, DBug12 loads this data into the
PC and
 executes the routine located there.
– To use the TOF interrupt you need to put the address of your TOF ISR at
addresses
 0x3E5E and 0x3E5F.

• The location of the vectors is defined in include files so you don’t have to remember
them or look them up in the reference manual.

– For Assembly programs, the vectors are defined in the file hcs12.inc

UserTimerOvf equ $3E5E

– For C programs, the vectors are defined in the file vectors12.h

#define UserTimerOvf _VEC16(47) /* Maps to 0x3E5E */

 EE 308 Spring 2011

Commonly Used Interrupt Vectors for the MC9S12Dp256

 EE 308 Spring 2011

Exceptions on the MC9S12

• Exceptions are the way a processor responds to things other than the normal sequence
of instructions in memory.

• Exceptions consist of such things as Reset and Interrupts.

• Interrupts allow a processor to respond to an event without constantly polling to see
whether the event has occurred.

• On the MC9S12 some interrupts cannot be masked — these are the Unimplemented
Instruction Trap and the Software Interrupt (SWI instruction).

• XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X bit
is cleared to enable the XIRQ interrupt, it cannot be set to disable it.

– The XIRQ interrupt is for external events such as power fail which must be
responded to.

• The rest of the MC9S12 interrupts are masked with the I bit of the CCR.

– All these other interrupts are also masked with a specific interrupt mask. For
example, the Timer Overflow Interrupt is masked with the TOI bit of the TSCR2
register.
– This allows you to enable any of these other interrupts you want.
– The I bit can be set to 1 to disable all of these interrupts if needed.

 EE 308 Spring 2011

The Real Time Interrupt

• Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt
the processor at a regular interval.

• Information on the Real Time Interrupt is in the CRG Block User Guide

• There are two clock sources for MC9S12 hardware.

– Some hardware uses the Oscillator Clock. The RTI system uses this
clock.
* For our MC9S12, the oscillator clock is 8 MHz.

– Some hardware uses the Bus Clock. The Timer system (including the
Timer Overflow Interrupt) use this clock.
* For our MC9S12, the bus clock is 24 MHz.

 EE 308 Spring 2011

• The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the
CRGINT register.

• When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.

– To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG
register.

• The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register. The
RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits are the
Modulus Counter Select bits to provide additional graunularity.

• To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0
bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT
register

– In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to
the RTIF bit of the CRGFLG register.

 EE 308 Spring 2011

• The following table shows all possible values, in ms, selectable by the RTICTL register
(assuming the system uses a 8 MHz oscillator):

 EE 308 Spring 2011

• Here is a C program which uses the Real Time Interrupt:

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h" /* DBug12 RAM-based interrupt vectors */
#define enable() __asm(cli)
#define disable() __asm(sei)
interrupt void rti_isr(void);

void main(void)
{

disable();
DDRB = 0xff;
PORTB = 0;
RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enable RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti_isr;
enable();
while (1)
{

__asm(wai); /* Do nothing -- wait for interrupt */
}

}

interrupt void rti_isr(void)
{

PORTB = PORTB + 1;
CRGFLG = 0x80;

}

 EE 308 Spring 2011

RTI interrupt service routine to display a global 16-bit variable called value on the
seven-segment display

interrupt void rti_isr(void)
{

static unsigned char digit=0;
const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,

 0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,
 0x58, 0x5e, 0x79, 0x71};

switch (digit) {

case 0: PTP = 0x0E;
PTJ |= 0x02;
PORTB = hex2seven_seg[(value>>12)&0x0F];
break;

case 1: PTP = 0x0D;
PTJ |= 0x02;
PORTB = hex2seven_seg[(value>>8)&0x0F];
break;

case 2: PTP = 0x0B;
PTJ |= 0x02;
PORTB = hex2seven_seg[(value>>4)&0x0F];
break;

case 3: PTP = 0x07;
PTJ |= 0x02;
PORTB = hex2seven_seg[(value)&0x0F];
break;

}
if (++digit >= 4) digit = 0;
CRGFLG = 0x80;

}

• digit is declared to be static so its value remains between entries into RTI_isr

• You cannot pass a value to an interrupt service routine, so any variable from
another
part of the program used by the ISR must be declared as global

• You cannot pass a value out of an ISR, so if another part of the prgram needs a
value deterimed inside an ISR, you must use a global variable. It must also be

 EE 308 Spring 2011

declared as volatile so the compiler knows that its value may change outside the
regular program flow.

