Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

¢ The Real Time Interrupt
e Huang Section 6.6
¢ CRG Block User Guide
o Exceptions on the 9S12
o Using interrupts on the 9S12
o The Real Time Interrupt on the 9S12

Using Interrupts on the MC9S12
What happens when the MC9S12 receives an unmasked interrupt?
a. Finish current instruction
b. Push all registers onto the stack

c. Set I bit of CCR

d. Load Program Counter from interrupt vector for highest priority interrupt which is

pending

The following (from the MC9S12DP256B Device User Guide) shows the exception
priorities. The Reset is the highest priority, the Clock Monitor Fail Reset the next

hightest, etc.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source ﬁfﬁ Local Enable HTI_::JRIIE?EE:J:E
m_ Dezet Mone MHone - I
] ook Monmor T3 reset Mone m -
SFFFA, 3FFFB COF failure reset Mone COP rate select -
SFFF8, SFFFS Unimplemented instruction trap Mone Mone -
@ Sl Mone Mone -
SFFF4. SFFFE IR -Bit None =
SFFF2, 5FFF3 IRQ I-Bit IRQCR [IRQEM) 5F2
SFFFD, SFFF1 Real Time Interrupt I-Bit CRGIMT (RTIE) SFD
SFFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE {COM}) SEE
SFFEC, SFFED Enhanced Capture Timer channel 1 I-Bit TIE {11} SEC
SFFEA, 3FFEB Enhanced Capture Timer channel 2 I-Bit TIE {C21) SEA
SFFEB, 3FFES Enhanced Capture Timer channe! 3 I-Bit TIE {C31) FEB
SFFES, 3FFET Enhanced Capture Timer channel 4 I-Bit TIE (41} FEG
SFFE4, 3FFES Enhanced Capture Timer channel 5 I-Bit TIE (S5} FE4
SFFE2, 3FFE3 Enhanced Capture Timer channel & I-Bit TIE (Cal) FEZ
SFFED, 3FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (71} FED
SFFDE, SFFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOF) S0E
SFFDC, FFFDD Pulse accumulator A overflow I-Bit FACTL (FACAWI) DC
SFFDA, SFFDB Pulse accumulator input edge I-Bit PACTL (PAI) S04,
SErDn. srroe =FI0 B | SPOCHT (SPIE srrE) |
SFFDA8, SFFOT SCI0 I-Bit (TIE. TIiJ:tI:ED:FTIE ILIE) 305
SFFD4, SFFDS b] | I-Bit (TIE. TIiJ:tI:I;CFTIE ILIE) 304
SFFOZ, SFFD3 ATD0 Bt | AIDOCTLZ (ASCIE) $02
SFFDO0, SFFDM AT I-Bit ATD1CTL2 (ASCIE) F00
SFFCE, SFFCF Paort J I-Bit PTJIF (PTJIE} SCE
SFFCC, 3FFCD Port H I-Bit FTHIF{PTHIE)} $CC
SFFCA, SFFCB Modulus Down Counter underfiow I-Bit MCCTL{MCZI) FCA

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

SFFoB

SFFCAE, 5FFCH Pulse Accumulator B Overflow I-Bit FBCTL(FPEOWT) 3CH
SFFCE, 3FFCT CRG PLL lock I-Bit CRGINT{LOCKIE) BCH
SFFC4, SFFCH CRG Seif Clock Mode I-Bit CRGINT (2CMIE] 4
SFFC2, 3FFC3 BOMLC I-Bit DLCBCR1(IE) BCc2
SFFCO, FFCA IIC Bus I-Bit IBCR {IBIE) 300
SFFBE, 3FFBF aPN I-Bit SP1CR1 (SPIE, SPTIE) 5BE
SFFBC, SFFED P2 I-Bit SP2CR1 (SPIE, SPTIE) BC
SFFBE, FFFBg FLASH I-Bit FCTL{CCIE, CBEIE) 82
SFFB&, BFFBT CAMD wake-up I-Bit CAMNORIER (WUFIE) sBG
SFFB4, 3FFBS CAND emors I-Bit | CAMDRIER (CSCIE, OVRIE) sB4
SFFB2, 3FFBE3 CAMD recefve I-Bit CAMDRIER (RXFIE) iB2
SFFBO, 3FFB1 CAMD tramsmit I-Bit | CAMITIER (TXEIE2-TXEIED) sB80
SFFAE, SFFAF CAM1 wake-up I-Bit CANTRIER (WUFIE) SAE
SFFAC, SFRAD CANT emors I-Bit | CAMIRIER (CECIE, OWVRIE) 3AC
SFFAA, SFRAB CAMT receive I-Bit CAM1RIER (RXFIE) A4
SFFAB, SFRAD CAM1 tramsmmit I-Bit | CANITIER (TXEIE2-TXEIED) SAE
SFFAB, SFRAT CAMNZ wake-up I-Bit CANZRIER (WUPIE) HAE
IFFA4, SFFRAD CANZ emors I-Bit | CAMZRIER (CSCIE, OVEIE) ahd
SFFAZ, SFFA3 CAMZ recene I-Bit CAMZRIER (RXFIE) A2
SFFAD, 3FFAT CAM2 tramsmit IHBit | CAMZTIER (TXEIE2-TXEIED) aA0
SFFOE, 3FFEF CAMN3I wake-up I-Bit CANZRIER (WUFIE) H0E
SFFEC, SFFED CANZ emors I-Bit | CAN3RIER (TXEIE2-TXEIED) C
SFFGA, FFFEB CAM3 recene I-Bit CAM3RIER (RXFIE) FoA
SFFgE, 3FFog CAMN3 tramsmit I-Bit | CAMATIER (TXEIE2-TXEIED) 308
SFFOG, FFFET CAMNS wake-up I-Bit CAN4RIER (WUFIE) 5004
SFFE4, FFFES5 CAN amors I-Bit | CAM4RIER (CSCIE, OVRIE) o4
SFFE2, FFFE3 CAMNE receive I-Bit CAM4RIER (RXFIE) a2
SFFE0, FFFET CAMS tramsmit I-Bit | CAMN4TIER (TXEIE2-TXEIZD) a0
SFF8E, $FFEF Fort P Intermupt I-Bit FTPIF (FTFIE) 8
SFFEC, SFFED =M Emergency Shutdown I-Bit PWHRIEDN (PWRIE) B0
SFFE0 to = i

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.
Before using interrupts, make sure to:
a. Load stack pointer
* Done for you in C by the C startup code
b. Write Interrupt Service Routine
* Do whatever needs to be done to service interrupt
— You cannot pass a variable to an ISR. If the ISR needs to know the value
of a variable used in another part of the program, that variable must be
global
— You cannot return a variable from an ISR to another part of the program.
If the program needs to know the value of a variable set in an ISR, that
variable must be global
* Clear interrupt flag
* Exit with the RTT instruction
— Use the interrupt key word in the CodeWarrior compiler
— Tells compiler to exit function with rti instruction rather than rts
instruction
c. Load address of interrupt service routine into interrupt vector
* E.g., UserTimerOvf = (unsigned short) &toi_isr;
d. Do any setup needed for interrupt
* For example, for the TOF interrupt, turn on timer and set prescaler
e. Enable specific interrupt

f. Enable interrupts in general (clear I bit of CCR with cli instruction

Can disable all (maskable) interrupts with the sei instruction.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* When the MCO9S12 is reset, the interrupts are disabled. Some compilers enable
interrupts by default, so your code should turn off interrupts before doing setup.

e Can do this with __asm(sei);
* Can also do the following:

#define disable() __asm(sei)
#define enable() _ asm(cli)

and then use more C-like disable(); and enable();

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Example of C program using Timer Overflow Interrupt

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h" /* DBugl2 RAM-based interrupt vectors */

#define enable() __asm(cli)
#define disable() __asm(sei)
interrupt void toi_isr(void); /* Function prototype */

void main(void)

{

disable();

DDRB = 0xff; /* Make Port B output */

/* Setup for Timer Overflow Interrupt */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x06; /* Set prescaler so interrupt period is 175 ms */

UserTimerOvf = (unsigned short) &toi_isr;
TSCR2 = TSCR2 | 0x80; /* Enable timer overflow interrupt */
/* Done with setup */

enable(); /* Enable interrupts (clear I bit) */
while (1)
{

}

__asm(wai); /* Do nothing - go into low power mode */

}

interrupt void toi_isr(void)
{
PORTB = PORTB+1;
TFLG2 = 0x80; /* Clear timer interrupt flag */

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

An example of the MC9S12 registers and stack when a TOF interrupt is received

HC12 STATE BEFORE RECEIVING TOF INTERRUPT

A BA BB
0123
4567
3000
1015
o7

B

[£

5 3 ®

dHAdAgddgag GHuBNIEENY

BB BB BB E(AE| T b

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

An example of the MC9S12 registers and stack just after a TOF interrupt is
received

* All of the MC9S12 registers are pushed onto the stack, the PC is loaded with
the contents of the Interrupt Vector, and the | bit of the CCR is set

HC1i2 STATE AFTER RECEIVING TOF INTERRUPT

A A = B 3B u
IBFT a7 R
o123 X p—— =
4567 Y 3B AR A
IBFR 01
BET e — = X
—> 103 EC 3BT 45
2EED &7 ¥ \/
17 Fan:] T ™ %
Y 15
3000
F¥DE 10
F¥L7 79
F¥Te 10
5305 &7
F¥TA 10
530] 52
F¥TC 10
F¥LD 4B
f FFTE 10
\L F¥TF n
FFED 10

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Interrupt vectors for the HCS12

* The interrupt vectors for the MC9S12DG256 are located in memory from 0xFF80 to
OxFFFF.

* These vectors are programmed into Flash EEPROM and are very difficult to change
* DBugl?2 redirects the interrupts to a region of RAM where they are easy to change
* For example, when the HCS12 gets a TOF interrupt:

— It loads the PC with the contents of OXFFDE and 0xFFDF.
— The program at that address tells the HCS12 to look at address 0x3ESE and
O0x3ESF.
— If there is a 0x0000 at these two addresses, DBugl?2 gives an error stating that
the

interrupt vector is uninitialized.
— If there is anything else at these two addresses, DBug12 loads this data into the
PC and

executes the routine located there.
— To use the TOF interrupt you need to put the address of your TOF ISR at
addresses

0x3ESE and 0x3ESF.

* The location of the vectors is defined in include files so you don’t have to remember
them or look them up in the reference manual.

— For Assembly programs, the vectors are defined in the file hcs12.inc
UserTimerOvf equ $3ESE
— For C programs, the vectors are defined in the file vectors12.h

#define UserTimerOvf _VEC16(47) /* Maps to 0x3ESE */

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Commonly Used Interrupt Vectors for the MC9S12Dp256

Interrupt Specific General | Normal DBug-12
Mazk Magk Vector Vector
SPIZ SP2CHL1 (BPIE, SPTIE) I FFEC, FFED | 3E3C, 3E3D
BFI1 SPACHL (SPIE, SPTIE) I FFEE, FFEF | 3E3E, 3E3F
IIC IECR (IBIR} I FFCO, FFCi | 3E40, 3E44
BDLC DLCBCR (IE) I FFC2, FFC3 | 3E42, 3EA3
CAG Belf Clock Mode CRGINT (SCMIE) I FFC4, FFC5 | 3E44, 3EAS
CHG Lock CRGINT (LOCEIE) I FFCE, FFCT | 3Ed8, 3EAT
Pulee Acc B Owverflow FBCTL (PEOVI) I FFCB, FFCO | 3E48, 3E4D
Mod Down Crr UnderFlow MCCTL (MCZI) I FFCA, FFCE | 3E4A, 3E4H
Port H FTHIF (PTHIE} I FFCC, FFCD | 3EAC, 3EAD
Port J PTIIF (PTIIE} I FFCE, FFCF | 3E4E, 3EAF
ATD1 ATDACTL2 (ABCIE) I FFDO, FFDi | 3E50, 3EGR1
ATDD ATDOCTLZ (ABCIE) I FFD2, FFD3 | 3E52, 3EGR3
BCI1 SCicH2 I FFD4, FFDS | 3EG4, 3ERG
(TIE, TCIE, RIE, ILIE)
SCID SC0CH2 I FFDG, FFDT | 3ERG, 3ERT
(TIE. TCIE, RIE, ILIE)
SPID SPOCHL (SPIE) I FFDB, FFD9 | 3E58, 3EGD
Pulse Acc A Edge FPACTL (PAI) I FFDA, FFDE | 3ERA, 3EGRH
Pulee Acc A Owverflow FPACTL (PAOVI) I FFDC, FFDD | 3ESC, 3EGD
Enh Capt Timer Owerflow TECR2 (TOI) I FFOE, FFD¥F | 3ESE, 3JESF
Enh Capr Timer Chammel T | TIE {(C7TI) I FFEO, FFE1 | 3E60, 3EE1
Enh Capr Timer Chammel & | TIE {CEI) I FFE2, FFE2 | 3ER2, 3EE3
Enh Capr Timer Chammel & | TIE {CGI) I FFE4, FFES | 3E64, 3EEL
Enh Capr Timer Chammel 4 | TIE {CAI) I FFEG, FFET | 3ERG, 3EET
Enh Capr Timer Chammel 3 | TIE (C3I) I FFE3, FFES | 3E68, 3EEQ
Enh Capr Timer Chammel 2 | TIE (C2I) I FFEA, FFEE | 3E6A, 3EEH
Enh Capr Timer Chammel i | TIE {CiI) I FFEC, FFED | 3ERC, 3EED
Enh Capr Timer Chammel O | TIE {COI) I FFEE, FFEF | 3EGE, 3EEF
Real Time CRGINT (RTIE} I FFFO, FFFi | 3ET0, 3ET
IRQ TROCR (IRQEN} I FFF2, FFF3 | 3ET2, 3ET3
LIRQ {Nome) x FFFF, FFFF | 3ET4, 3ETH
EWI {Roma) {Kom=) | FFF&, FFFT | 3ET6, 3ETT
Unimplemenced Inatructioo | (Mome) {Nome) | FFFA, FFF9 | 3ETE, JETO
COP Failure COPCTL {Kon=) | FFFA, FFFE | 3ETA, 3ET
(CR2-CRO COP Rate Select)
COP Clock Moniotr Fail FLLCTL {CME, SCME) {Kom=) | FFFC, FFFD | 3ETC, 3ET
Reset {Nomne) {Nomna) FFFE,. FFFF | 3ETE, 3ETF

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Exceptions on the MC9S12

* Exceptions are the way a processor responds to things other than the normal sequence
of instructions in memory.

* Exceptions consist of such things as Reset and Interrupts.

* Interrupts allow a processor to respond to an event without constantly polling to see
whether the event has occurred.

* On the MC9S12 some interrupts cannot be masked — these are the Unimplemented
Instruction Trap and the Software Interrupt (SWI instruction).

* XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X bit
is cleared to enable the XIRQ interrupt, it cannot be set to disable it.

— The XIRQ interrupt is for external events such as power fail which must be
responded to.

* The rest of the MC9S12 interrupts are masked with the I bit of the CCR.

— All these other interrupts are also masked with a specific interrupt mask. For
example, the Timer Overflow Interrupt is masked with the TOI bit of the TSCR2
register.

— This allows you to enable any of these other interrupts you want.

— The I bit can be set to 1 to disable all of these interrupts if needed.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The Real Time Interrupt

* Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt
the processor at a regular interval.

* Information on the Real Time Interrupt is in the CRG Block User Guide

* There are two clock sources for MC9S12 hardware.
— Some hardware uses the Oscillator Clock. The RTI system uses this
Sllgglr(-our MC9S12, the oscillator clock is 8 MHz.
— Some hardware uses the Bus Clock. The Timer system (including the

Timer Overflow Interrupt) use this clock.
* For our MC9S12, the bus clock is 24 MHz.

VCC

= - L2344 . .06
05C Clock - L2481632 64 - Lz2aa
2 MHz RTR &4 (RTICTL) BTR 3:0{RTICTL)

A~ . verrup

S 1Bi
CRGINT coR

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the
CRGINT register.

* When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.
- To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG
register.

* The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register. The
RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits are the
Modulus Counter Select bits to provide additional graunularity.

ETTF BHRF Q0 LOCRTE| LioCK TRACE SMIF S oe0037 CRFL

ETIE 0 0 LOCKIE 0 0 SMIE 0 CecD038 CREINT

0 ETEE FIRS FTR4 | FIR3 34 4 2] FIEl | FIRD (0038 RTTCTL

* To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0
bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT
register

— In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to
the RTIF bit of the CRGFLG register.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

* The following table shows all possible values, in ms, selectable by the RTICTL register
(assuming the system uses a § MHz oscillator):

RTR 3:0 RIR 6:4
000 001 010 011 100 101 110 111
(0) (1) (2) (3) (4) (5) (6) (7)
0000 (0)fJOff [0.128 | 0.266 | 0.512 | 1.024 | 2.04B| 4.0096 8.192
0001 (fjoff (0266 [0.B12 [1.204| 2.048 | 4.096| 8.182
0010 (2)fJ0ff [0.384 | 0. 768 | 1.636 | 3.072| 6.144| 12.288
0011 (3)) 0ff [0.612 [1.024 [2.048| 4.096| B8.192| 16.381 .
0100 (4)f0ff [0.640 | 1.280 | 2.660 | 5.120 | 10.240 | 20.480 | 40.960
0101 ()l 0ff [0.768 | 1.636 | 3.072 | 6.144 | 12.288 | 24.570 | 49.152
0110 (6) | 0ff [0.896 [1.792 | 3.684| 7.168[14.336 | 28.672 | E7.344
0111 (7)f 0ff | 1.024 | 2.048 [4.096 | 8.192 32.?58 65.536
1000 (B)foff 1,162 2.304 [4.608 | 0.216| 18.4232 | 36.864 | 73.72B
1001 (o) 0ff [1.280 [2.560 [5.120 | 10.240 | 20.480 | 40.960 | 81.920
1010 (a)foff [1.408 [2.816 [5.632 [11.264 | 22.528 | 45.056 | 90.112
1011 (B)foff [1.536 [3.072 [6.144 | 12.288 [24.576 | 49.152 | 98.304
1100 (Cof0ff [1.664 [3.328 [6.656 | 13.312 | 26.624 | 53.248 | 106.496
1101 (Do off [1.729 [3.584 [7.168 | 14.336 | 28.672 | 57.244 | 114 .688
1110 (EJ || Off [1.020 | 3.840 | 7.680 | 15.360 | 30.720 | 61.440 | 122.880
1111 (F))| 0£f [2.048 | 4.096 5.192] 16.384' 32.768 | 65.536 | 131.072

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Here is a C program which uses the Real Time Interrupt:

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h" /* DBugl2 RAM-based interrupt vectors */

#define enable() __asm(cli)
#define disable() __asm(sei)
interrupt void rti_isr(void);

void main(void)
{
disable();
DDRB = Oxff;
PORTB = 0;
RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enable RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti_isr;
enable();
while (1)
{

}

__asm(wai); /* Do nothing -- wait for interrupt */

}

interrupt void rti_isr(void)

{
PORTB = PORTB + [;
CRGFLG = 0x80;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

RTI interrupt service routine to display a global 16-bit variable called value on the
seven-segment display

interrupt void rti_isr(void)
{
static unsigned char digit=0;
const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,
0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,
0x58, 0x5e, 0x79, 0x71};

switch (digit) {
case 0: PTP = Ox0E;
PTJ I= 0x02;
PORTB = hex2seven_seg[(value>>12)&0x0F];
break;
case 1: PTP = 0x0D;
PTJ I= 0x02;
PORTB = hex2seven_seg[(value>>8)&0x0F];
break;
case 2: PTP = 0x0B;
PTJ I= 0x02;
PORTB = hex2seven_seg[(value>>4)&0x0F];
break;
case 3: PTP = 0x07;
PTJ I= 0x02;
PORTB = hex2seven_seg[(value)&0x0F];
break;
}
if (++digit >=4) digit = 0;
CRGFLG = 0x80;
}

« digit is declared to be static so its value remains between entries into RTL_ isr

* You cannot pass a value to an interrupt service routine, so any variable from
another
part of the program used by the ISR must be declared as global

* You cannot pass a value out of an ISR, so if another part of the prgram needs a
value deterimed inside an ISR, you must use a global variable. It must also be

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

declared as volatile so the compiler knows that its value may change outside the
regular program flow.

