Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

« The 9S12 Output Compare Function
« Huang Section 8.6
« ECT_16B8C Block User Guide
o Interrupts on the MC9S12
o The MC9S12 Output Compare Function
o Registers used to enable the Output Compare Function
o Using the MC9S12 Output Compare Function
o A program to use the MC9S12 Output Compare to generate a
square wave
o Setting and clearing bits in the Timer Subsystem

Ways to implement delays
* Software Delay

void delay (unsigned int ms) {
unsigned int i;
while (ms > 0) {
i=D_IMS;
while (i > 0) {
1i=1i-1;
}

ms=ms - 1;
}
Cannot do anything while waiting

* Timer Overflow or Real Time Interrupt
Only fixed delays

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The MC9S12 Output Compare Function
Want event to happen at a certain time

Want to produce pulse with width T

-— T —!
Wait until TCNT == 0x0000, then bring PA0 high
Wait until TCNT == T, then bring PA0 low
while (TCNT != 0x0000) ;
PORTA = PORTA | 0x01;

while (TCNT !=T) ;
PORTA = PORTA & ~0x01;

Problems:
1) May miss TCNT == 0x0000 or TCNT ==
2) Time not exact —— software delays

3) Cannot do anything else while waiting

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Want event to happen at a certain time

Want to produce pulse with width T

Jk
T

1

= — =

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

Now pulse is exactly T cycles long

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

OUTPUT COMPARE PORT T 0-7

To use Output Compare, you must set IOSx to 1 in TIOS

Ol Olx (TCTL 020

Tall HC12 Wi fm
F £V TH Y 06 WEATH

P Pin
Time Gock T
Enahic wih TEM
Sa ris Wit i Caiar
16 B
COEPRTETOD
CxfF
WCT Bead
TFLGY
— Iz rru e
u“:lm co =1
’ TE o

Wi HIPT Y 6 T T
I hapEn i TCX Ao penr

CxF

TR

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The HCS12 Output Compare Function
* The MC9S12 allows you to force an event to happen on any of the eight PORTT pins
* An external event is a rising edge, a falling edge, or a toggle
* To use the Output Compare Function:

— Enable the timer subsystem (set TEN bit of TSCR1)

— Set the prescaler

— Tell the HCS12 that you want to use Bit x of PORTT for output compare

— Tell the HCS12 what you want to do on Bit x of PORTT (generate rising edge,
falling edge, or toggle)

— Tell the HCS12 what time you want the event to occur

— Tell the HCS12 if you want an interrupt to be generated when the event is
forced to occur

* There are some more complicated features of the output compare subsystem which are
activated using registers CFORC, OC7M, OC7D and TTOV.
— Writing a 1 to the corresponding bit of CFORC forces an output compare event
to occur, the same as if a successful comparison has taken place (Section 8.6.5 of
Huang).
— Using OC7M and OC7D allow Timer Channel 7 to control multiple output
compare functions (Section 8.6.4 of Huang).
— Using TTOV allows you to toggle an output compare pin when TCNT
overflows. This allows you to use the output compare system to generate pulse
width modulated signals.
— We will not discuss these advanced features in this class.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Write a 1 to Bit 7 of TSCR1 to turn on timer

TEN

TSHAT

TEFCR

To turn on the timer subsystem: TSCR1 = 0x80;

Set the prescaler in TSCR2

el0de TSFL

Make sure the overflow time is greater than the width of the pulse you want to generate

004D TSCRZ

TOL 1] 1 TCRE PR2 FRl PR
Benod | oeerflow
PRz uizal ERD {ns) (m=)
To have overflow rate of 21.84 ms:

o 0 o.od1s | 2.73

0 0 0.0833 5.46 TSCR2 = 0x03;
0 1 0.1667 10,92

0 1 0.3333 | 21.84

1 i} 0. 8667 43. 69

1 0 1.2332 | 26.38

1 1 z2.6667 |174.76

1 1 5.3333 | 349.53

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Write a 1 to the bits of TIOS to make those pins output compare

IOS7T I0Se IOS5 IOS4 I0S3 IoS2 IoSs1 Ios0 0x00B0 TIOS

To make Pin 4 an output compare pin: TIOS = TIOS | 0X10;

Write to TCTL1 and TCTL2 to choose action to take

M7 oL7 OMie OL& M5 OLS 4 OL4 Ox0043 TCTL1
M3 QL3 Lal. P L2 oMl oLl M0 OLD Ox004% TCTLZ2
Ofin OLn Confi ti .
. To have Pin 4 toggle on compare:
i} 0 Disconnected
TCTLI1 = (TCTL1 | BITO) & ~BIT1;

a 1 Toggle

1 0 Clear

1 1 Sat

Write time you want event to occur to TCn register.
To have event occur on Pin 4 when TCNT == 0x0000: TC4 = 0x0000;
To have next event occur T cycles after last event, add T to TCn.

To have next event occur on Pin 4 500 cycles later: TC4 = TC4 + 500;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

When TCNT == TCn, the specified action will occur, and flag CFn will be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

CF7 CF& CFS CF4 CF3 CF2 CF1 CFD 0x004E TFLG1

To wait until TCNT == TC4: while (TFLG1 & BIT4) == 0) ;

To clear flag bit for Pin 4: TFLGI = BIT4;

To enable interrupt when compare occurs, set corresponding
bit in TIE register

CTI CeI C5I CAT C3iI C2T CiI CoI O0x0OAC TIE

To enable interrupt when TCNT == TC4: TIE = TIE | BIT4;

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology
H

Using Output Compare on the MC9S12
1. In the main program:
(a) Turn on timer subsystem (TSCRI1 reg)
(b) Set prescaler (TSCR2 reg)
(c) Set up PTx as OC (TIOS reg)

(d) Set action on compare (TCTL 1-2 regs, OMx OLx bits)

OM=x | OLx | Action
0 0 [hsconnected
0 1 Toggle
1 0 Clear
1] Set

(e) Clear Flag (TFLG1 reg)

(f) Enable int (TIE reg)

2. In interrupt service routine
(a) Set time for next action to occur (write TCx reg)

* For periodic events add time to TCx register

(b) Clear flag (TFLGI1 reg)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spl‘ing 2011
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h"

#define PERIOD 3000
#define HALF_PERIOD (PERIOD/2)

#define disable() __asm(sei)
#define enable() __asm(cli)

interrupt void toc2_isr(void);

void main(void)

{

disable();

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x04; /* Set prescaler to 16 (0.666 us) */

TIOS = TIOS | 0x04; /* Configure PT2 as Output Compare */
TCTL2 = (TCTL2 | 0x10) & ~0x20; /* Set up PT2 to toggle on compare */
TFLGI1 = 0x04; /* Clear Channel 2 flag */

/* Set interrupt vector for Timer Channel 2 */

UserTimerCh2 = (unsigned short) &toc2_isr;

TIE = TIE | 0x04; /* Enable interrupt on Channel 2 */
enable();

while (1)

{

}

__asm(wai);

}

interrupt void toc2_isr(void)

{
TC2 =TC2 + HALF_PERIOD;
TFLG1 = 0x04;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Capturing the Time of an External Event

* One way to determine the time of an external event is to wait for the event to occur, the
read the TCNT register:

* For example, to determine the time a signal on Bit 0 of PORTB changes from a high to

alow:
while ((PORTB & BITO0) !=0) ; /* Wait while Bit O high */
time = TCNT; /* Read time after goes low */

* Two problems with this:

1. Cannot do anything else while waiting
2. Do not get exact time because of delays in software

* To solve problems use hardware which latches TCNT when event occurs, and generates
an interrupt.

* Such hardware is built into the MC9S12 — called the Input Capture System

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Measure the time between two events

45T +50

|

2 :
—— FBE0 »— PEl

\ \

o

How to measure At?
Wait until signal goes low, then measure TCNT

while (PORTB & BIT0) == BITO0) ;
start = TCNT;

while (PORTB & BIT0) == BIT1) ;
end = TCNT;

dt = end - start;

Problems: 1) May not get very accurate time
2) Can’t do anything while waiting for signal
level to change.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Measure the time between two events

h— &

|||—/

Solution: Latch TCNT on falling edge of signal
Read latched values anytime later and get exact value

Can have MCO9S12 generate interrupt when event occurs, so can do
other things while waiting

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The MC9S12 Input Capture Function

* The MC9S12 allows you to capture the time an external event occurs on any of the
eight Port T PTT pins

* An external event is either a rising edge or a falling edge
* To use the Input Capture Function:
— Enable the timer subsystem (set TEN bit of TSCR1)
— Set the prescaler
— Tell the MC9S12 that you want to use a particular pin of PTT for input capture
— Tell the MC9S12 which edge (rising, falling, or either) you want to capture

— Tell the MC9S12 if you want an interrupt to be generated when the capture
occurs

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

A Simplified Block Diagram of the MC9S12 Input Capture Subsystem
Input Capture

Port T Pin x set up as Input Capture (I0Sx = 0 in TOIS)

16 Bit Counier
TCHT

Bus Cleck

CxF
Read
TFLG1
YCC
00: Disabla
01: Eising
10: Falling
11: Eithar
Caxl | Bit
TIE CCR
[

PTT Pin x

CxF
Write
TFLGA

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Registers used to enable Input Capture Function

Write a 1 to Bit 7 of TSCR1 to turn on timer

TEH TSWAI TSHCK IFFChA 0x0046 TSCRL

To turn on the timer subsystems: TSCR1 = BIT7;
Set the prescaler in TSCR2

Make sure the overflow time is greater than the time difference you want to measure

TOL 0] 0 TCRE PR2 PH1 ERO 0x004D TSCRZ

Pariod Ivarflow
PE2 PE1 PRO [5) [ms)
To have overflow rate of 21.84 ms:
a (1]] 0.0416 2.73
TSCR2 = 0x03;
0 0 1 0.0833 5.46
a 1 0 0.1667 | 10.82
0 1 1 0.3333 | 21.84
1 0 0o 0.6667 | 43.6%
1 0 1 1.3333 | 86.38
1 1 o 2. 6667 |174.78
1 1 1 5.3333 |349.53

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Write a 0 to the bits of TIOS to make those pins input capture

IosT

I0S6

IOS5

IS4

1053

Iosz2 Ios1 I0S0 Ox0040 TIOS

To make Pin 3 an input capture pin: TIOS = TIOS & ~BIT3;

Write to TCTL3 and TCTLA4 to choose edge(s) to capture

EDGTE

EDGTA

EDGEB

EDG&A

EDGSB

EDG5A | EDG4B | EDG4A Ox004R TCTL3

EDG3B

EDG3A

EDGZH

EDG2h

EDG1H

EDG1A | EDGOB | EDGOA Ox004B TCTL4

EDGnE

EDGnA

Configuration

Disabled

Rising

Falling

Any

To have Pin 3 capture a rising edge:
TCTLA4 = (TCTL4 | BIT6) & ~BIT7,;

When specified edge occurs, the corresponding bit in TFLG1 will be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

cEF7

CF&

CF5

CF4

CF3

CF2 CFl CF0 0x00BE TFLG1

To wait until rising edge on Pin 3: while ((TFLG1 & BIT3) ==0) ;
To clear flag bit for Pin 3: TFLG1 = BIT3;

To enable interrupt when specified edge occurs, set corresponding bit in TIE register

C7I

CeI

ChI

cdIx

3z

Cc21 ClI ciI 0x004C TIE

To enable interrupt on Pin 3: TIE = TIE | BIT3;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

To determine time of specified edge, read 16-bit result registers TCO thru TC7
To read time of edge on Pin 3:

unsigned int time;
time = TC3;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using Input Capture on the M(C9S12
Input Capture: Connect a digital signal to a pin of Port T. Can capture the time of an edge
(rising, falling or either) — the edge will latch the value of TCNT into TCx register.
This is used to measure the difference between two times.
To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 -> Bit 7 of TSCR1 reg)

2. Set prescaler (TSCR2 reg). To get most accuracy set overflow rate as small as
possible, but larger than the maximum time difference you need to measure.

3. Setup PTx as IC (0 -> bit x of TIOS reg)

4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

EDGxE | EDGxA
0 0 hsabled
0 1 Rising Edge

1 0 Falling Edge
1 1 Either Edge

5. Clear flag (1 -> bit x of TFLGI1 reg, 0 -> all other bits of TFLG1)

6. If using interrupts
(a) Enable interrupt on channel x (1 -> bit x of TIE reg)
(b) Clear I bit of CCR (cli or enable())
(¢) In interrupt service routine,
1. Read time of edge from TCx
ii. Clear flag (1 -> bit x of TFLGI1 reg, 0 -> all other bits of TFLGI)

7. If polling in main program
(a) Wait for Bit x of TFLG1 to become set
(b) Read time of edge from TCx
(c) Clear flag (1 -> bit x of TFLGI reg, 0 -> all other bits of TFLG1)

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

/* Program to determine the time between two rising edges using the *
* MC9S12 Input Capture subsystem

*/

#include <hidef.h> /* common defines and macros */

#include "derivative.h"

#include <stdio.h>
#include <termio.h>

unsigned int first, second, time;

void main(void)

{

TSCR1 = 0x80; /* Turn on timer subsystem */

TSCR2 = 0x05; /* Set prescaler for divide by 32 */

/* 87.38 ms overflow time */
/* Setup for IC1 */

TIOS = TIOS & ~0x02; /* 10C1 set for Input Capture */
TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */
TFLG1 = 0x02; /* Clear IC1 Flag */

/* Setup for IC2 */
TIOS = TIOS & ~0x04; /* 10C2 set for Input Capture */
TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */

TFLG1 = 0x04; /* Clear 1C2 Flag */

while ((TFLG1 & 0x02) == 0) ; /* Wait for 1st rising edge; */
first = TC1; /* Read time of 1st edge; */
while ((TFLG1 & 0x04) == 0) ; /* Wait for 2nd rising edge; */
second = TC2; /* Read time of 2nd edge; */
time = second - first; /* Calculate total time */

printf("time = %d cycles\n",time);
__asm(swi);

/* derivative-specific definitions */

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using the Keyword volatile in C

* Consider the following code fragment, which waits until an event occurs on Pin 2 of
PTT:

#define TRUE 1

#define FALSE 0
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h"
#define enable() __asm(cli)
#define disable() __asm(sei)

interrupt void tic2_isr(void);
unsigned int time, done;

void main(void)

{

disable();

/* Code to set up Input Capture 2 */

TFLG1 = 0x04; /* Clear CF2 */

UserTimerCh2 = (short) &tic2_isr; /* Set interrupt vector */
enable(); /* Enable Interrupts */

done = FALSE;

while (!done) ;

__asm(swi);

}

interrupt void tic2_isr(void)
{
time = TC2;
TFLGI = 0x04;
done = TRUE;

Electrical Engineering .
New Mexico Institute of Mining and Technology EE 308 Sprlng 201 1

* An optimizing compiler knows that done will not change in the main() function. It may
decide that, since done is FALSE in the main() function, and nothing in the main()
function changes the value of done, then done will always be FALSE, so there is no need

to check if it will ever become TRUE.
* An optimizing comiler might change the line
while (!done) ;
to
while (TRUE) ;
and the program will never get beyond that line.
* By declaring done to be volatile, you tell the compiler that the value of done might
change somewhere else other than in the main() function (such as in an interrupt service

routine), and the compiler should not optimize on the done variable.

volatile unsigned int time, done;

* If a variable can change its value outside the normal flow of the program (i.e., inside an
interrupt service routine), declare the variable to be of type volatile.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Program to measure the time between two rising edges, and print out the result

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include <stdio.h>

#include <termio.h>

#include "vectors12.h"

#define enable() __asm(cli)
#define disable() __asm(sei)

#define TRUE 1
#define FALSE 0

/* Function Prototypes */
interrupt void ticl_isr(void);
interrupt void tic2_isr(void);

/* Declare things changed inside ISRs as volatile */
volatile unsigned int first, second, time, done;

void main(void)
{
disable();
done = FALSE;

/* Turn on timer subsystem */
TSCR1 = 0x80;

/* Set prescaler to 32 (87.38 ms), no TOF interrupt */
TSCR2 = 0x05;

/* Setup for IC1 */

TIOS = TIOS & ~0x02; /* Configure PT1 as IC */
TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */

TFLG1 = 0x02; /* Clear 1C1 Flag */

/* Set interrupt vector for Timer Channel 1 */
UserTimerChl = (short) &ticl_isr;

TIE = TIE | 0x02; /* Enable IC1 Interrupt */

/* Setup for IC2 */

TIOS = TIOS & ~0x04; /* Configure PT2 as IC */

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

}

TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */
TFLGI1 = 0x04; /* Clear IC2 Flag */

/* Set interrupt vector for Timer Channel 2 */
UserTimerCh2 = (short) &tic2_isr;

TIE = TIE | 0x04; /* Enable IC2 Interrupt */
/* Enable interrupts by clearing I bit of CCR */
enable();
while (!done)
{
__asm(wai); /* Low power mode while waiting */
}
time = second - first; /* Calculate total time */
printf("time = %d cycles\r\n",time); /* print */;

interrupt void ticl_isr(void)

{

}

first = TC1;
TFLG1 = 0x02;

interrupt void tic2_isr(void)

{

second = TC2;
done = TRUE;
TFLG1 = 0x04;

