
 EE 308 Spring 2011

• Using the MC9S12 IIC Bus with DS 1307 Real Time Clock
• DS1307 Data Sheet

• The MC9S12 Serial Communication Interface (SCI)

• MC9S12 SCI Block Guide V02.05

• Huang, Sections 9.2-9.6

Dallas Semiconductor DS1307 Real Time Clock

• The DS 1307 is a real-time clock with 56 bytes of NV (non-volatile) RAM

• It uses the IIC bus, with address 11010002

• It stores date and time

– Data are stored in BCD format

• It uses a 32.768 kHz crystal to keep time

• It can generate a square wave output

– Frequency of square wave can be 1 Hz, 4.096 kHz, 8.192 kHz or 32.768 kHz

• It uses a battery to hold the date and time when your board is not powered

 EE 308 Spring 2011

Using the Dallas Semiconductor DS1307 Real Time Clock

• Set up the IIC bus

– Find the SCL frequency, SDA hold time, Start and Stop hold times

– Determine the value to write to IBFD to meet those times

• To set the time,

– Send the Start condition

– Write address of clock (with R/Ŵ low)

– Write a 0 (to select seconds register),

– Write second, minute, hour, day of week, day of month, month, year, control

• Control determines whether or not to enable square wave, and selects

frequency

– Send the Stop condition

• To read the clock,

– Send the Start condition

– Write the address of the clock (with R/Ŵ low), then write a 0 (to select seconds

register).

– Send the Stop condition

– Send the Start condition

– Write the address of the clock (with R/Ŵ high)

– Read the time registers.

– Send the Stop condition

• If you want to store some data which will remain between power cycles,

you can write it to the 56 bytes of NV RAM

 EE 308 Spring 2011

Asynchronous Data Transfer

• In asynchronous data transfer, there is no clock line between the two devices

• Both devices use internal clocks with the same frequency

• Both devices agree on how many data bits are in one data transfer (usually 8, sometimes

9)

• A device sends data over an TxD line, and receives data over an RxD line

– The transmitting device transmits a special bit (the start bit) to indicate the start

of a transfer

– The transmitting device sends the requisite number of data bits

– The transmitting device ends the data transfer with a special bit (the stop bit)

• The start bit and the stop bit are used to synchronize the data transfer

 EE 308 Spring 2011

Asynchronous Data Transfer

• The receiver knows when new data is coming by looking for the start bit (digital 0 on

the RxD line).

• After receiving the start bit, the receiver looks for 8 data bits, followed by a stop bit

(digital high on the RxD line).

• If the receiver does not see a stop bit at the correct time, it sets the Framing Error bit in

the status register.

• Transmitter and receiver use the same internal clock rate, called the Baud Rate.

• At 9600 baud (the speed used by D-Bug12), it takes 1/9600 second for one bit, 10/9600

second, or 1.04 ms, for one byte.

Asynchronous Serial Protocols

 EE 308 Spring 2011

• The SCI interface on the MC9S12 uses voltage levels of 0 V and +5 V. The RS-232

standard uses voltage levels of +12 V and -12 V.

– The Dragon12-Plus board uses a Maxim MAX232A chip to shift the TTL levels

from the MC9S12 to the RS-232 levels necessary for connecting to a standard

serial port. 0 V from the SCI is converted to +12 V on the DB-9 connector and +5

V from the SCI is converted to -12 V on the DB-9 connector.

– The RS-232 standard can work on cables up to a length of 50 feet.

• Another asynchronous standard is RS-485. Dragon12-Plus board can use SCI1 in RS-

485 mode

– RS-485 is a two-wire differential asynchronous protocol

– Multiple devices can connect to the same two wires

– Only one device on the RS-485 bus can transmit; all the other devices are in

receive mode

– The Dragon12-Plus DS75176 differential-to-single ended converter to convert

the single-ended SCI1 data to differential RS-485 data

– Bit 0 of Port J determines if the RS-485 should be in receive mode or transmit

mode

– RS-485 can work with cables up to a length of 1,000 feet.

 EE 308 Spring 2011

Parity in Asynchronous Serial Transfers

• The HCS12 can use a parity bit for error detection.

– When enabled in SCI0CR1, the parity function uses the most significant bit for

parity.

– There are two types of parity – even parity and odd parity

* With even parity, and even number of ones in the data clears the parity

bit; an odd number of ones sets the parity bit. The data transmitted will

always have an even number of ones.

* With odd parity, and odd number of ones in the data clears the parity bit;

an even number of ones sets the parity bit. The data transmitted will

always have an odd number of ones.

– The HCS12 can transmit either 8 bits or 9 bits on a single transfer, depending on

the state of M bit of SCI0CR1.

– With 8 data bits and parity disabled, all eight bits of the byte will be sent.

– With 8 data bits and parity enabled, the seven least significant bits of the byte

are sent; the MSB is replaced with a parity bit.

– With 9 data bits and parity disabled, all eight bits of the byte will be sent, and an

additional bit can be sent in the sixth bit of SCI0DRH.

* It usually does not make sense to use 9 bit mode without parity.

– With 9 data bits and parity enabled, all eight bits of the byte are sent; the ninth

bit is the parity bit, which is put into the MSB of SCI0DRH in the receiver.

 EE 308 Spring 2011

Asynchronous Data Transfer

• The HCS12 has two asynchronous serial interfaces, called the SCI0 and SCI1 (SCI

stands for Serial Communications Interface)

• SCI0 is used by D-Bug12 to communicate with the host PC

• When using D-Bug12 you normally cannot independently operate SCI0 (or you will

lose your communications link with the host PC)

• The SCI0 TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of Port S.

• The SCI0 RxD pin is bit 0 of Port S; the SCI1 RxD pin is bit 2 of Port S.

• In asynchronous data transfer, serial data is transmitted by shifting out of a transmit

shift register into a receive shift register.

 EE 308 Spring 2011

Timing in Asynchronous Data Transfers

• The BAUD rate is the number of bits per second.

• Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and 115,000

• At 9600 baud the transfer rate is 9600 bits per second, or one bit in 104 µs.

• When not transmitting the TxD line is held high.

• When starting a transfer the transmitting device sends a start bit by bringing TxD low

for one bit period (104 µs at 9600 baud).

• The receiver knows the transmission is starting when it sees RxD go low.

• After the start bit, the transmitter sends the requisite number of data bits.

• The receiver checks the data three times for each bit. If the data within a bit is different,

there is an error. This is called a noise error.

• The transmitter ends the transmission with a stop bit, which is a high level on TxD for

one bit period.

• The receiver checks to make sure that a stop bit is received at the proper time.

• If the receiver sees a start bit, but fails to see a stop bit, there is an error. Most likely the

two clocks are running at different frequencies (generally because they are using different

baud rates). This is called a framing error.

• The transmitter clock and receiver clock will not have exactly the same frequency.

• The transmission will work as long as the frequencies differ by less 4.5%(4% for 9-bit

data).

 EE 308 Spring 2011

 EE 308 Spring 2011

Baud Rate Generation

• The SCI transmitter and receiver operate independently, although they use the same

baud rate generator.

• A 13-bit modulus counter generates the baud rate for both the receiver and the

transmitter.

• The baud rate clock is divided by 16 for use by the transmitter.

• The baud rate is

mboxSCIBaudRate = Bus Clock/(16 × SCI1BR[12:0])

• With a 24 MHz bus clock, the following values give typically used baud rates.

 EE 308 Spring 2011

SCI Registers

• Each SCI uses 8 registers of the HCS12. In the following we will refer to SCI1.

• Two registers are used to set the baud rate (SCI1BDH and SCI1BDL)

• Control register SCI1CR2 is used for normal SCI operation.

• SCI1CR1 is used for special functions, such as setting the number of data bits to 9.

• Status register SCI1SR1 is used for normal operation.

• SCI1SR2 is used for special functions, such as single-wire mode.

• The transmitter and receiver can be separately enabled in SCI1CR2.

• Transmitter and receiver interrupts can be separately enabled in SCI1CR2.

• SCI1SR1 is used to tell when a transmission is complete, and if any error was

generated.

• Data to be transmitted is sent to SCI1DRL.

• After data is received it can be read in SCI1DRL. (If using 9-bit data mode, the ninth bit

is the MSB of SCI0DRH.)

 EE 308 Spring 2011

 EE 308 Spring 2011

Example program using the SCI Transmitter

#include "derivative.h"

/* Program to transmit data over SCI port */

main()

{

/**

* SCI Setup

***/

SCI1BDL = 156; /* Set BAUD rate to 9,600 */

SCI1BDH = 0;

SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |

| | | | | | | ____ Even Parity

| | | | | | ______ Parity Disabled

| | | | | ________ Short IDLE line mode (not used)

| | | | __________ Wakeup by IDLE line rec (not used)

| | | ____________ 8 data bits

| | ______________ Not used (loopback disabled)

| ________________ SCI1 enabled in wait mode

__________________ Normal (not loopback) mode

*/

SCI1CR2 = 0x08; /* 0 0 0 0 1 0 0 0

| | | | | | | |

| | | | | | | ____ No Break

| | | | | | ______ Not in wakeup mode (always awake)

| | | | | ________ Reciever disabled

| | | | __________ Transmitter enabled

| | | ____________ No IDLE Interrupt

| | ______________ No Reciever Interrupt

| ________________ No Tranmit Complete Interrupt

__________________ No Tranmit Ready Interrupt

*/

/**

* End of SCI Setup

***/

 EE 308 Spring 2011

SCI1DRL = ’h’; /* Send first byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’e’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’o’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

}

 EE 308 Spring 2011

Example program using the SCI Receiver

/* Program to receive data over SCI1 port */

#include "derivative.h"

#include "vectors12.h"

interrupt void sci1_isr(void);

volatile unsigned char data[80];

volatile int i;

main()

{

/**

* SCI Setup

***/

SCI1BDL = 156; /* Set BAUD rate to 9,600 */

SCI1BDH = 0;

SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |

| | | | | | | ____ Even Parity

| | | | | | ______ Parity Disabled

| | | | | ________ Short IDLE line mode (not used)

| | | | __________ Wakeup by IDLE line rec (not used)

| | | ____________ 8 data bits

| | ______________ Not used (loopback disabled)

| ________________ SCI1 enabled in wait mode

__________________ Normal (not loopback) mode

*/

SCI1CR2 = 0x04; /* 0 0 1 0 0 1 0 0

| | | | | | | |

| | | | | | | ____ No Break

| | | | | | ______ Not in wakeup mode (always awake)

| | | | | ________ Reciever enabled

| | | | __________ Transmitter disabled

| | | ____________ No IDLE Interrupt

| | ______________ Reciever Interrupts used

| ________________ No Tranmit Complete Interrupt

__________________ No Tranmit Ready Interrupt

*/

 EE 308 Spring 2011

UserSCI1 = (unsigned short) &sci1_isr;

i = 0;

enable();

/**

* End of SCI Setup

***/

while (1)

{

/* Wait for data to be received in ISR, then

* do something with it

*/

}

}

interrupt void sci1_isr(void)

{

char tmp;

/* Note: To clear receiver interrupt, need to read

* SCI1SR1, then read SCI1DRL.

* The following code does that

*/

if ((SCI1SR1 & 0x20) == 0) return; /* Not receiver interrrupt */

data[i] = SCI1DRL;

i = i+1;

return;

}

