Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

« Using the MC9S12 IIC Bus with DS 1307 Real Time Clock
o DS1307 Data Sheet

o The MC9S12 Serial Communication Interface (SCI)

o MC(C9S12 SCI Block Guide V02.05

« Huang, Sections 9.2-9.6

Dallas Semiconductor DS1307 Real Time Clock

* The DS 1307 is a real-time clock with 56 bytes of NV (non-volatile) RAM
¢ It uses the IIC bus, with address 1101000,
* It stores date and time

— Data are stored in BCD format
* It uses a 32.768 kHz crystal to keep time
* It can generate a square wave output

— Frequency of square wave can be 1 Hz, 4.096 kHz, 8.192 kHz or 32.768 kHz

* [t uses a battery to hold the date and time when your board is not powered

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using the Dallas Semiconductor DS1307 Real Time Clock
* Set up the IIC bus

— Find the SCL frequency, SDA hold time, Start and Stop hold times
— Determine the value to write to IBFD to meet those times

e To set the time,

— Send the Start condition
— Write address of clock (with R/W low)
— Write a 0 (to select seconds register),
— Write second, minute, hour, day of week, day of month, month, year, control
¢ Control determines whether or not to enable square wave, and selects
frequency
— Send the Stop condition

* To read the clock,
— Send the Start condition
— Write the address of the clock (with R/W low), then write a O (to select seconds
register).

— Send the Stop condition

— Send the Start condition

— Write the address of the clock (with R/W high)

— Read the time registers.

— Send the Stop condition
* If you want to store some data which will remain between power cycles,
you can write it to the 56 bytes of NV RAM

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology

Asynchronous Data Transfer
* In asynchronous data transfer, there is no clock line between the two devices

* Both devices use internal clocks with the same frequency

* Both devices agree on how many data bits are in one data transfer (usually 8, sometimes
9)

¢ A device sends data over an TxD line, and receives data over an RxD line
— The transmitting device transmits a special bit (the start bit) to indicate the start

of a transfer
— The transmitting device sends the requisite number of data bits

— The transmitting device ends the data transfer with a special bit (the stop bit)
* The start bit and the stop bit are used to synchronize the data transfer

Asynchronous Seral Communicatlions

T =i

Hx[l TxD

|||—
|||—

¥

Ik

LR R
o D

Oz bryie weguiires 110 bit timas

I DE
11010110

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Asynchronous Data Transfer

* The receiver knows when new data is coming by looking for the start bit (digital O on
the RxD line).

* After receiving the start bit, the receiver looks for 8 data bits, followed by a stop bit
(digital high on the RxD line).

* [f the receiver does not see a stop bit at the correct time, it sets the Framing Error bit in
the status register.

e Transmitter and receiver use the same internal clock rate, called the Baud Rate.

* At 9600 baud (the speed used by D-Bug12), it takes 1/9600 second for one bit, 10/9600
second, or 1.04 ms, for one byte.

Asynchronous Serlal Communications

Hie

I I T

One byl requires 10 bit times

Hie

=5 B e

o DM

-
-
=]
-
=}
-~
-
pel=l

xDé
11010110

Asynchronous Serial Protocols

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* The SClI interface on the MC9S12 uses voltage levels of 0 V and +5 V. The RS-232
standard uses voltage levels of +12 V and -12 V.
— The Dragon12-Plus board uses a Maxim MAX232A chip to shift the TTL levels
from the MC9S12 to the RS-232 levels necessary for connecting to a standard
serial port. 0 V from the SCI is converted to +12 V on the DB-9 connector and +5
V from the SCI is converted to -12 V on the DB-9 connector.
— The RS-232 standard can work on cables up to a length of 50 feet.

* Another asynchronous standard is RS-485. Dragon12-Plus board can use SCII in RS-
485 mode
— RS-485 is a two-wire differential asynchronous protocol
— Multiple devices can connect to the same two wires
— Only one device on the RS-485 bus can transmit; all the other devices are in
receive mode
— The Dragon12-Plus DS75176 differential-to-single ended converter to convert
the single-ended SCI1 data to differential RS-485 data
— Bit 0 of Port J determines if the RS-485 should be in receive mode or transmit
mode
— RS-485 can work with cables up to a length of 1,000 feet.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Parity in Asynchronous Serial Transfers

* The HCS12 can use a parity bit for error detection.
— When enabled in SCIOCR1, the parity function uses the most significant bit for
parity.

— There are two types of parity — even parity and odd parity
* With even parity, and even number of ones in the data clears the parity
bit; an odd number of ones sets the parity bit. The data transmitted will
always have an even number of ones.
* With odd parity, and odd number of ones in the data clears the parity bit;
an even number of ones sets the parity bit. The data transmitted will
always have an odd number of ones.

— The HCS12 can transmit either 8 bits or 9 bits on a single transfer, depending on
the state of M bit of SCIOCRI1.

— With 8 data bits and parity disabled, all eight bits of the byte will be sent.

— With 8 data bits and parity enabled, the seven least significant bits of the byte
are sent; the MSB is replaced with a parity bit.

— With 9 data bits and parity disabled, all eight bits of the byte will be sent, and an
additional bit can be sent in the sixth bit of SCIODRH.
* It usually does not make sense to use 9 bit mode without parity.

— With 9 data bits and parity enabled, all eight bits of the byte are sent; the ninth
bit is the parity bit, which is put into the MSB of SCIODRH in the receiver.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Asynchronous Data Transfer

* The HCS12 has two asynchronous serial interfaces, called the SCI0 and SCI1 (SCI
stands for Serial Communications Interface)

* SCIO is used by D-Bug12 to communicate with the host PC

* When using D-Bugl12 you normally cannot independently operate SCIO (or you will
lose your communications link with the host PC)

* The SCIO TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of Port S.
* The SCIO RxD pin is bit O of Port S; the SCI1 RxD pin is bit 2 of Port S.

* In asynchronous data transfer, serial data is transmitted by shifting out of a transmit
shift register into a receive shift register.

C——— —— — — - - — T — B - — —

—-—-—-——--—-———-—-—dI Ih——_—_—-_-—_—_-—-—JI

distribited into two 8-bit megisters, SCIOORH and SCIOCRL

An overnan errcr is gorerated if B shift moeghster £51led befoere SCIOOR read

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Timing in Asynchronous Data Transfers
* The BAUD rate is the number of bits per second.
* Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and 115,000
* At 9600 baud the transfer rate is 9600 bits per second, or one bit in 104 ps.
* When not transmitting the TxD line is held high.

* When starting a transfer the transmitting device sends a start bit by bringing TxD low
for one bit period (104 ps at 9600 baud).

* The receiver knows the transmission is starting when it sees RxD go low.
* After the start bit, the transmitter sends the requisite number of data bits.

e The receiver checks the data three times for each bit. If the data within a bit is different,
there is an error. This is called a noise error.

* The transmitter ends the transmission with a stop bit, which is a high level on TxD for
one bit period.

* The receiver checks to make sure that a stop bit is received at the proper time.

* If the receiver sees a start bit, but fails to see a stop bit, there is an error. Most likely the
two clocks are running at different frequencies (generally because they are using different
baud rates). This is called a framing error.

* The transmitter clock and receiver clock will not have exactly the same frequency.

* The transmission will work as long as the frequencies differ by less 4.5%(4% for 9-bit
data).

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology

Timing in Asynchronous Data Transfers

ASYHNCHROMOUS SERIAL COMMUMIATIONS
Bawd Clock = 16 x Baud Rake

' Start Bit \ LsB / i \
JENCSINR N Ny | 1] -
EEEBE/NEEOEEBEEEEEE EHEEEEHEH

Start Bit — Theee 1's5 fol lowed by °5 at BT, 3,5, 7 Dats Bt — Check ak FTE, 9, 10

(Two of BT, 5,7 M=t e a8rD - (MEority deCides walns)
If noe all =ero, Moise Flag =) (If not all same, noise Slag set)

If oo stop bit Oebeched, Framing Ercor Flay St
Baud clocks can differ by 4.5% (d% fior 9 d&ta nts)
with o errors.

Brdl parity —— the ruier of Oes in deks woied is eeen
ol pErity —- the nuer of aes in dets woed is odd

WD using pErity, tranEmt 7 deea + 1 pErity, or 8 deka + 1 perity

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Baud Rate Generation

* The SCI transmitter and receiver operate independently, although they use the same
baud rate generator.

* A 13-bit modulus counter generates the baud rate for both the receiver and the
transmitter.

* The baud rate clock is divided by 16 for use by the transmitter.
* The baud rate is

mboxSCIBaudRate = Bus Clock/(16 x SCI1BR[12:0])

0 to 8192 -

BE
|

— 15 ——= TraEnaEmither

* With a 24 MHz bus clock, the following values give typically used baud rates.

Hits Recetver Transmitter Target birror
SPR[12:0] Clock (Hz) Clock (Hz) Band Rate (%)
39 6153846 38.461.5 35,400 0.16

(! 307 692 3 19.230.7 14024000 .16

14t 153,5846.1 an 4615 AT 016

312 76, 6093.0 38.461.5 4 =00 0.16

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

SCI Registers
* Each SCI uses 8 registers of the HCS12. In the following we will refer to SCI1.
* Two registers are used to set the baud rate (SCI1BDH and SCI1BDL)
* Control register SCI1CR2 is used for normal SCI operation.
* SCIICRI is used for special functions, such as setting the number of data bits to 9.
» Status register SCI1SR1 is used for normal operation.
* SCI1SR2 is used for special functions, such as single-wire mode.
* The transmitter and receiver can be separately enabled in SCI1CR2.
* Transmitter and receiver interrupts can be separately enabled in SCI1CR2.

* SCI1SRI1 is used to tell when a transmission is complete, and if any error was
generated.

e Data to be transmitted is sent to SCI1DRL.

* After data is received it can be read in SCI1DRL. (If using 9-bit data mode, the ninth bit
is the MSB of SCIODRH.)

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

0 0 0 | serd2 | sERll | SER10 SER8
SERT | SBR6 |SERS | SBRd | SBR3 | =2 SERD
LOCES | sc1swma| RERC M WAEFE ILT PT
TIE | TCIE | RIE ILIE| TE FE SEE
TFE C -8 30 DLE R M FF

0 0 0 0 0 BREL3 BAF
R8 T8 0 0 0 0 0
R1/T7 | R&/T6 |E5/TS | R4/T4 | R3/T3 | R2/T2 RO/TO

SCT1EmH - (0000

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Example program using the SCI Transmitter

#include "derivative.h"
/* Program to transmit data over SCI port */

main()

{

[t ste st e slesteste st s shesfeste e s e sfesfe e s s shesfesfe e s shesheste e s s shesfesfe st s shesfeste e s seshesfesfe s sheshesfeste e s sesfeshe e s sl sfesfe e

* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */

SCIIBDH = 0;

SCIICR1 = 0x00; /000

Even Parity
Parity Disabled
Short IDLE line mode (not used)
Wakeup by IDLE line rec (not used)
8 data bits
Not used (loopback disabled)
SCI1 enabled in wait mode
Normal (not loopback) mode

00000
LT
0 I T O
(0 I T N
1\
[\
\

I
I
I
I
I
I
\

I
I
I
I
I
I
I
\

I
I
I
I
I
I
I
I
\
*/

SCIICR2 =0x08; /00001000

L1

I I 1'___ No Break

[\ Not in wakeup mode (always awake)
[\ Reciever disabled

\ Transmitter enabled

No IDLE Interrupt

No Reciever Interrupt

No Tranmit Complete Interrupt
No Tranmit Ready Interrupt

[t skl ste e e shesheste e e e shesle e s slesheshesfe e el shesle e e e shesfesfe e el shesle ekl e e ek sl e steskesksle etk ok etk

* End of SCI Setup

Aesfestestestestecheslestesie e shesheste e el et slesheshe e e el et skl e e el etk e teleokoksle deteleokokdeteotokkek ok

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

SCIIDRL ="h’; /* Send first byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */
SCIIDRL ="¢’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */
SCIIDRL ="I’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */
SCIIDRL ="I’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */
SCIIDRL ="0’; /* Send next byte */

while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Example program using the SCI Receiver
/* Program to receive data over SCII port */

#include "derivative.h"
#include "vectors12.h"

interrupt void scil_isr(void);
volatile unsigned char data[80];
volatile int i;

main()

{

[t ste st e slesteste st s shesfeste e s e sfesfe e s s shesfesfe e s shesfeste e s s shesfesfe st s shesfeste e s seshesfesfe st sheshesfeste e s sesfeshe e s sleskesfesfe ek

* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */
SCI1BDH = 0;
SCI1CR1 = 0x00; /*0 00
I
_____ Even Parity
Parity Disabled
Short IDLE line mode (not used)
Wakeup by IDLE line rec (not used)
8 data bits
Not used (loopback disabled)
SCI1 enabled in wait mode
Normal (not loopback) mode

00
I
I
I
[\
\

00
I
I
I
I
I
[\
\

0
I
I
I
I
I
I
I
\

SCIICR2 = 0x04; /*

I 1
[1
[\ Not in wakeup mode (always awake)
\ Reciever enabled
Transmitter disabled
No IDLE Interrupt
Reciever Interrupts used
No Tranmit Complete Interrupt
No Tranmit Ready Interrupt

/
0
I
I
I
I
I
I
I
\

/————————O/————————

/

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

}

UserSCI1 = (unsigned short) &scil_isr;
1=0;
enable();

[t st sk sleste e e ke sfeste e e e sfesle e e seshesfesfe e el shesle e e sesheshe e e el sl e e sl etk sle e steckeskse et leckok etk

* End of SCI Setup

Aesfestestesteslechesle e st sheshesheste e el e st slesheslesfe e el e skl ste e ekl el e teleskecksle e teleokokdetelokokok ok

while (1)

{
/* Wait for data to be received in ISR, then
* do something with it
*/

}

interrupt void scil_isr(void)

{

char tmp;

/* Note: To clear receiver interrupt, need to read
* SCI1SR1, then read SCI1DRL.

* The following code does that

*/

if ((SCI1SR1 & 0x20) == 0) return; /* Not receiver interrrupt */
data[i] = SCI1DRL;

1=1+1;

return,;

