

• HC12 Addressing Modes

• Instruction coding and execution

- Inherent, Extended, Direct, Immediate, Indexed, and Relative Modes
- Summary of MC9S12 Addressing Modes
- Using X and Y registers as pointers
- How to tell which branch instruction to use
- How to hand assemble a program
- Number of cycles and time taken to execute an MC9S12 program

The HCS12 has 6 addressing modes

Most of the HC12's instructions access data in memory There are several ways for the HC12 to determine which address to access

Effective address:

Memory address used by instruction

Addressing mode:

How the HC12 calculates the effective address

HC12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

REL Relative (used only with branch instructions)

IDX Indexed (won't study indirect indexed mode)

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA 18 06	; Add B to A (A) + (B) \rightarrow A
CLRA 87	; Clear A $0 \rightarrow A$
ASRA 47	; Arithmetic Shift Right A
TSTA <mark>97</mark>	; Test A (A) – 0x00 Set CCR

The HC12 does not access memory

There is no effective address

The Extended (EXT) addressing mode

Instructions which give the 16-bit address to be accessed

LDAA \$1000	; (\$1000) → A			
B6 10 00	Effective Address: \$1000			
LDX \$1001	; ($\$1001$: $\$1002$) \rightarrow X			
FE 10 01	Effective Address: $\$1001$			
STAB \$1003	; (B) \rightarrow \$1003			
7B 10 03	Effective Address: \$1003			

Effective address is specified by the two bytes following op code

				1	 1	1
0x1000	17	0x2000	B6	A		в
	35		10			1
	02		00	x		
	4A		FE			
	C7		10			
			01			
			7B			
			10			
			03			
				•		

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode Instructions which give 8 LSB of address (8 MSB all 0)

LDAA \$20	; (\$0020) → A
96 20	Effective Address: \$0020
STX \$21	; (X) \rightarrow \$0021:\$0022
5E 21	Effective Address: \$0021

8 LSB of effective address is specified by byte following op code

The Immediate (IMM) addressing mode

Value to be used is part of instruction				
LDAA #\$17	; $17 \rightarrow A$			
B6 17	Effective Address: PC + 1			

ADDA #10	; (A) + $A \rightarrow A$
8B 0A	Effective Address: PC + 1

Effective address is the address following the op code

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC) Simple Forms

LDAA 0,X	; Use (X) as address to get value to put in A
A6 00	Effective address: contents of X
ADDA 5,Y	; Use $(Y) + 5$ as address to get value to add to
AB 45	Effective address: contents of $Y + 5$

More Complicated Forms

INC 2,X–	; Post-decrement Indexed
	; Increment the number at address (X),
	; then subtract 2 from X
62 3E	Effective address: contents of X

INC 4,+X	; Pre-increment Indexed
	; Add 4 to X
	; then increment the number at address (X)
62 23	Effective address: contents of $X + 4$

x	EFF ADDR
Y	EFF ADDR

Addressing Mode	Source Format	Abbreviation	Description
Addressing Mode	sing Mode Source Format Abbr		Description
Inherent	INST (no externally supplied operands)	INH	Operands (if any) are in CPU registers
Immediate	INST #opr8i or INST #opr16i	IMM	Operand is included in instruction stream 8- or 16-bit size implied by context
Direct	INST opr8a	DIR	Operand is the lower 8 bits of an address in the range \$0000-\$00FF
Extended	INST opr16a	EXT	Operand is a 16-bit address
Relative	INST rel8 or INST rel16	REL	An 8-bit or 16-bit relative offset from the current pc is supplied in the instruction
Indexed (5-bit offset)	INST oprx5,xysp	IDX	5-bit signed constant offset from X, Y, SP, or PC
Indexed (pre-decrement)	INST oprx3,-xys	IDX	Auto pre-decrement x, y, or sp by 1 ~ 8
Indexed (pre-increment)	INST oprx3,+xys	IDX	Auto pre-increment x, y, or sp by 1 - 8
Indexed (post-decrement)	INST oprx3,xys-	IDX	Auto post-decrement x, y, or sp by 1 ~ 8
Indexed (post-increment)	INST oprx3,xys+	IDX	Auto post-increment x, y, or sp by 1 - 8
Indexed (accumulator offset)	INST abd,xysp	IDX	Indexed with 8-bit (A or B) or 16-bit (D) accumulator offset from X, Y, SP, or PC
Indexed (9-bit offset)	INST oprx9,xysp	IDX1	9-bit signed constant offset from X, Y, SP, or PC (lower 8 bits of offset in one extension byte)
Indexed (16-bit offset)	INST oprx16,xysp	IDX2	16-bit constant offset from X, Y, SP, or PC (16-bit offset in two extension bytes)
Indexed-Indirect (16-bit offset)	INST [oprx16,xysp]	[IDX2]	Pointer to operand is found at 16-bit constant offset from X, Y, SP, or PC (16-bit offset in two extension bytes)
Indexed-Indirect (D accumulator offset)	INST [D,xysp]	[D,IDX]	Pointer to operand is found at X, Y, SP, or PC plus the value in D

Table 3-1. M68HC12 Addressing Mode Summary

Different types of indexed addressing modes

(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES

(Does not include indirect modes)

	Example	Effective Address	Offset	Value in X After Done	Registers To Use
Constant Offset	LDAA n,X	(X)+n	0 to FFFF	(X)	X, Y, SP, PC
Constant Offset	LDAA - n, X	(X)-n	0 to FFFF	(X)	X, Y, SP, PC
Postincrement	LDAA n, X+	(X)	1 to 8	(X)+n	X, Y, SP
Preincrement	LDAA n, +X	(X)+n	1 to 8	(X)+n	Х, Ү, SP
Postdecrement	LDAA n, X-	(X)	1 to 8	(X)-n	X, Y, SP
Predecrement	LDAA n, -X	(X)-n	1 to 8	(X)-n	X, Y, SP
ACC Offset	LDAAA,X LDAAB,X LDAAD,X	(X)+(A) (X)+(B) (X)+(D)	0 to FF 0 to FF 0 to FFFFF	(X)	X, Y, SP, PC

The data books list three different types of indexed modes:

- Table 4.2 of the **Core Users Guide** shows details
- **IDX:** One byte used to specify address
 - Called the postbyte
 - Tells which register to use
 - Tells whether to use autoincrement or autodecrement
 - Tells offset to use

• **IDX1:** Two bytes used to specify address

- First byte called the postbyte
- Second byte called the extension
- Postbyte tells which register to use, and sign of offset
- Extension tells size of offset
- **IDX2:** Three bytes used to specify address
 - First byte called the postbyte
 - Next two bytes called the extension
 - Postbyte tells which register to use
 - Extension tells size of offset

Postbyte Code (xb)	Source Code Syntax	Comments rr; 00 = X, 01 = Y, 10 = SP, 11 = PC			
rr0nnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 r can specify X, Y, SP, or PC			
111m0zs	n,r –n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte(s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) r can specify X, Y, SP, or PC	256 ≤ n ≤ 255 32,768 ≤ n ≤ 65,535		
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC	-32,768 ≤ n ≤ 65,535		
rr1pnnnn	n,—r n,+r n,r— n,r+	Auto predecrement, preincrement, postdecrement, o p = pre-(0) or post-(1), n = -8 to -1, +1 to +8 r can specify X, Y, or SP (PC not a valid choice) +8 = 0111 +1 = 0000 -1 = 1111 -8 = 1000	r postincrement;		
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa-00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect r can specify X, Y, SP, or PC			
111rr111	[D,r]	Accumulator D offset indexed-indirect r can specify X, Y, SP, or PC			

Table 3-2. Summary of Indexed Operations

Indexed addressing mode instructions use a postbyte to specify index registers (X and Y), stack pointer (SP), or program counter (PC) as the base index register and to further classify the way the effective address is formed. A special group of instructions cause this calculated effective address to be loaded into an index register for further calculations:

- Load stack pointer with effective address (LEAS)
- Load X with effective address (LEAX)
- Load Y with effective address (LEAY)

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch Treat the offset as a signed number; add the offset to the address following the current instruction to get the address of the instruction to branch to

BRA 20 35 PC + 2 + 0035 → PC BRA 20 C7 PC + 2 + FFC7 → PC PC + 2 - 0039 → PC

Long branch instruction: Two bytes following op code specifies how far to branch Treat the offset as an unsigned number; add the offset to the address following the current instruction to get the address of the instruction to branch to

LBEQ 18 27 02 1A If Z == 1 then PC + 4 + 021A \rightarrow PC If Z == 0 then PC + 4 \rightarrow PC

When writing assembly language program, you don't have to calculate offset You indicate what address you want to go to, and the assembler calculates the offset

0x1020 BRA \$1030

; Branch to instruction at address \$1030

Summary of HCS12 addressing modes

ADDRESSING MODES

Na	me	Example	Op Code	Effective Address
INH	Inherent	ABA	18 06	None
IMM	Immediate	LDAA #\$35	86 35	PC + 1
DIR	Direct	LDAA \$35	96 35	0x0035
EXT	Extended	LDAA \$2035	B6 20 35	0x2035
IDX IDX1 IDX2	Indexed	LDAA 3,X LDAA 30,X LDAA 300,X	A6 03 A6 E0 13 A6 E2 01 2C	X + 3 X + 30 X + 300
IDX	Indexed Postincrement	LDAA 3, X+	A6 32	X (X+3 -> X)
IDX	Indexed Preincrement	LDAA 3,+X	A6 22	X+3 (X+3 -> X)
IDX	Indexed Postdecrement	LDAA 3, X-	A6 3D	X (X-3 -> X)
IDX	Indexed Predecrement	ldaa 3,-x	A6 2D	X-3 (X-3 -> X)
REL	Relative	BRA \$1050 LBRA \$1F00	20 23 18 20 OE CF	PC + 2 + Offset PC + 4 + Offset

A few instructions have two effective addresses:

• MOVB #\$AA,\$1C00	Move byte 0xAA (IMM) to address \$1C00 (EXT)
• MOVW 0,X,0,Y	Move word from address pointed to by X (IDX) to address
	pointed to by Y (IDX)

A few instructions have three effective addresses:

• **BRSET FOO,#\$03,LABEL** Branch to LABEL (REL) if bits #\$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

• To initialize pointer use **ldx #table**

not

ldx table

• For example, the following loads the address of table (\$1000) into X; i.e., X will point to table:

ldx #table ; *Address of table* $\Rightarrow X$

The following puts the first two bytes of table (\$0C7A) into X. X will not point to table: **ldx table** ; *First two bytes of table* \Rightarrow X

• To step through table, need to increment pointer after use

ldaa 0,x inx

or

ldaa 1,x+

	Data	Address			
table	0C 7A D5 00 61 62 63 64	\$1000 \$1001 \$1002 \$1003 \$1004 \$1005 \$1006 \$1007	table:	org dc.b dc.b dc.b dc.b dc.b	\$1000 12,122,-43,0 'a' 'b' 'c' 'd'

Which branch instruction should you use? Branch if A > B

Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0, so 0xFF > 0x00

If signed, 0xFF = -1 and 0x00 = 0, so 0xFF < 0x00

Using unsigned numbers: **BHI** (checks C bit of CCR) Branch if Higher (*if* C + Z = 0)(*unsigned*)

Using signed numbers: **BGT** (checks V bit of CCR) Branch if Greater Than (*if* $Z + (N \oplus V) = 0$) (*signed*)

For unsigned numbers, use branch instructions which check C bit For signed numbers, use branch instructions which check V bit

Hand Assembling a Program

To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go into memory.

(e.g., **org \$2000** will put the first instruction at address **\$2000**.)

2. Look at the first instruction. Determine the addressing mode used. (e.g., **ldab #10** uses IMM mode.)

3. Look up the instruction in the **MC9S12 S12CPUV2 Reference Manual**, find the appropriate Addressing Mode, and the Object Code for that addressing mode. (e.g., **Idab IMM** has object code **C6 ii**.)

 Table 5.1 of S12CPUV2 Reference Manual has a concise summary of the instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary. (e.g., **ldab #10** becomes **C6 0A**.)

5. Add the number of bytes of this instruction to the address of the instruction to determine the address of the next instruction. (e.g., 2000 + 2 = 2002 will be the starting address of the next instruction.)

org \$2000 ldab #10 loop: clra dbne b,loop swi

Source Form	Operation	Addr.	Machine	Acces	is Detall	evu	8790
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SAHI	1210
LBGT ref16	Long Branch If Greater Than (If Z $+$ (N \oplus V) = 0) (signed)	REL	18 2E qq rr	OPPP/OPO1	OPPP/OP01		
LBHI ref16	Long Branch If Higher (If C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹	OPPP/OP01		
LBHS rel16	Long Branch If Higher or Same (If C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO1		
LBLE ref 16	Long Branch If Less Than or Equal (If Z + (N \oplus V) = 1) (signed)	REL	18 2F qq rr	OPPP/OPO1	OPPP/OP01		
LBLO rel 16	Long Branch If Lower (If C = 1) (unsigned) same function as LB CS	REL	18 25 qq rr	OPPP/OP01	OPPP/OPO1	·	
LBLS rel16	Long Branch If Lower or Same (If C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OP01	OPPP/OP01		
LBLT ref16	Long Branch If Less Than (If N V = 1) (signed)	REL	18 2D qq rr	OPPP/OPO ¹	OPPP/OP01		
LBMI ref16	Long Branch If Minus (If N = 1)	REL	18 2B qq rr	OPPP/OP01	OPPP/OPO1		
LBNE rel 16	Long Branch If Not Equal (If Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO1		
LBPL rel 16	Long Branch If Plus (If N = 0)	REL	18 2A qq rr	OPPP/OP01	OPPP/OP01		
LBRA rel 16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP	OPPP		
LBRN ref16	Long Branch Never (If 1 = 0)	REL	18 21 qq rr	OPO	OPO		
LBVC rel16	Long Branch If Overflow Bit Clear (If V=0)	REL	18 28 qq rr	OPPP/OP01	OPPP/OPO1		
LBVS rel 16	Long Branch If Overflow Bit Set (If V = 1)	REL	18 29 qq rr	OPPP/OP01	OPPP/OPO1		
LDAA qor8a LDAA qor1&a LDAA qor1&a LDAA qor0_xysp LDAA qor0_xysp LDAA qor1&ysp LDAA [qor1&xysp]	Lond Accumulator A	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	0 6 dd H6 hh 11 A6 xb A6 xb ff A6 xb ff A6 xb A6 xb A6 xb A6 xb	rPf rP0 rPf rP0 frPp flfrPf flPrPf	rfP rOP rfP rPO frPP fifrfP fifrfP		
LDAB #opr8 LDAB opr8a LDAB opr16a LDAB opr16a LDAB opr16.ysp LDAB opr16.ysp LDAB (00,ysp) LDAB (00,ysp)	(M) → B Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] IDX2	C6 11 D6 dd F6 hh 11 E6 xb E6 xb ff E6 xb qe ff E6 xb qe ff E6 xb qe ff	p rPf rP0 rPf rP0 frPp fifrPf fifrPf fiprPf	p rfP rfP rfP rPP fIFrPP fIFrPP fIFrP		ΔΔ0-
LDD exprtiti LDD exprtitie LDD exprtitie LDD exprtitie LDD exprtitie LDD exprtitie LDD (exprtitie LDD (exprtiti	(M:M+1) → A:B Load Double Accumulator D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [D,DX2]	CC jj kk DC dd FC hh 11 EC xb EC xb ff EC xb de ff EC xb EC xb	PO RPf RPO RPf fRPO fRPP fITRPf fIPRPf	qo qig qog qog qog qog qig qig qig qig qig qig qig qig qig qi		ΔΔ0-
Note 1. OPPP/OPO Indicates t	his instruction takes four cycles to renil the instruction queue t	f the branch is t	aken and three cycles if th	he branch is not taken.			
DS #opri& DS opri& DS opri& DS opn0.ysp DS opn16.ysp DS opn16.ysp DS [0.ysp] DS [0.ysp]	(M:M+1) → SP Load Stack Pointer	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CF jj kk DF dd FF hh 11 EF xb EF xb GG ff EF xb GG ff EF xb GG ff	PO RPf HPO RPf HPO fRPP fITRPf fITRPf	QD RIP ROP RIP RDP fIRP fIFRP fIFRP		ΔΔ0-
LDX #opr16 LDX opr16 LDX opr16 LDX opr16 LDX opr05.xysp LDX opr16.xysp LDX (D.xysp) LDX (D.xysp) LDX (D.xysp)	(M:M+1) → X Load Index Register X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CE jj kk DE dd FE hh 11 EE xb EE xb GG ff EE xb GG ff EE xb EE xb	PO HPI HPO RPI HPO fRPP fITRPI fITRPI	OP R1P R0P R1P R00 1R0P 1R1P 11R1P		ΔΔ0-

Table A-1. Instruction Set Summary (Sheet 7 of 14)

Source Cours	Operation	Addr.	Machine	Acces	s Detall	SYU!	NTHE
Source Ponti	operation	Mode	Coding (hex)	HCS12	M68HC12	O A HI	1210
BLS rel8	Branch If Lower or Same (If C + Z = 1) (unsigned)	REL	23 rr	DDD/D ₁	ppp/p1		
BLT rel8	Branch if Less Than (if N ⊕ V = 1) (signed)	REL	2D TT	DDD/D1	ppp/p1		
BMI rel8	Branch If Minus (If N = 1)	REL	2B rr	PPP/P1	ppp/p1		
BNE rel8	Branch If Not Equal (If Z = 0)	REL	26 rr	ppp/p1	ppp/p1		
BPL rel8	Branch If Plus (If N = 0)	REL	2A IT	ppp/p1	ppp/p1		
BRA rel8	Branch Always (f 1 = 1)	REL	20 rr	PPP	PPP		
BRCLR opr8a, msk8, rel8 BRCLR opr1 Re msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bif(s) Clear)	DIR	4F dd mm rr	r PPP r FDDD	TPPP		
BRCLR aprol0_xysp, msk8, rel8	(DX	OF xb mm rr	rppp	rppp		
BRCLR opno9,xysp, msk8, rel8		IDX1	OF xb ff mm rr	rfppp	rffppp		
вносн филодузд лаха, гаа	Dramb Moune (H.1., O)	DCL	UF XD GG II HEN II	PILPPP	IIVIIVV		
DESCT on the mole rail	Branki i Never (ii 1 = 0)	ND	AP dd mm rr	* *DDD	-000		
BRSET opr16a, make, rele	Branch if (M) • (mm) = 0	EXT	1E hh 11 mm rr	rippp	rfppp		
BRSET op.m0_xysp, msk8, rel8	(ii Ali Seletreu Birle) Sel)	DX	OE xb mm rr	rppp	rPPP		
BRSET OPTIGLIJSE, TISKS, TEKS DESET OPTIGLIJSE, VISP. TISKS, TEKS		IDX1	OE xb ff mm rr	rfppp	rffPPP		
DSET and mote	(M) + (mm) - M	ND	AC dd m	rPMO	TROW		A A 0-
BSET opri 6a, msk8	Set Bit(s) in Memory	EXT	1C hh 11 mm	rPwP	TPPW		440-
BSET opn:0_xysp, msk8		DX	oc xb mm	rPwO	rPOw		
BSET opnt9,xysp, msk8 DSET opnt6 was mak8		IDX1	nn 11 dx 20	r PwP	rPwP		
DSD mill	(SD) 2 - SD- DTNL-DTNL - Man-Man-	DEI	07	gnon	nnog		
baniee	(SP) ⁻² → SP, h1n(+h1n(→ m(SP)-m(SP+1)) Subroutine address → PC Branch to Subroutine	net	UT II	arre .	1115		
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	DDD/D1	ppp/p1		
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P1	ppp/p1		
CALL opri6a, page	$(SP) - 2 \rightarrow SP; RTN_{1+}RTN_{1-} \rightarrow M_{(SP)};M_{(SP+1)}$	EXT	4A hh 11 pg	gnSsPPP	gnfSsPPP		
CALL opnx0_xysp, page	$(SP) - 1 \rightarrow SP; (PPG) \rightarrow M_{(SP)};$	DX	4B xb pg	gnSsPPP	gnfSsPPP		
CALL oppxs,tysp,page	pg → PPAGE register; Program address → PC	IDX2	4B XD II pg	fmSsPPP	fmfSsPPP		
CALL [D, IV SP]	Call subroutine in extended memory	[D,IDX]	4B xb	flignSsPPP	flignSsPPP		
CALL [opix16, xysp]	(Program may be located on another expansion memory page.)	[IDX2]	4B xb ee ff	flignSsPPP	flignSsPPP		
	Indirect modes get program address and new pg value based on pointer.						
CBA	(A) – (B) Compare 8-Bit Accumulators	NH	18 17	00	00		
CLC	0 → C <i>Translates to A</i> NDCC #\$FE	IMM	10 FE	P	P		0
CLI	0 → I Translatesto ANDCC #\$EF	IMM	10 EF	P	P	0	
	(enables i-bit interrupts)					L	L
CLH op 16a CLH op n0 x vsn	0 → M Clear Memory Location	EXT	79 hh 11 69 xh	PWO Dw	WOP The		0100
CLR apro9, xysp		IDX1	11 dx 69	Pw0	PwO		
CLR oproct 6 xy sp		IDX2	ff as dx 69	PWP	PwP		
CLR [D,NSp]		[D,IDX]	69 xb	PIfw	PIfPw		
CLRA	0> A Clear Accumulator A	INH	87	0	0		
CLRB	0 → B Clear Accumulator B	NH	C7	0	0		
CLV	0 → V Translatesto ANDCC #\$FD	IMM	10 FD	p	P		0-
Note 1. PPP/P indicates this instr	uction takes three cycles to refil the instruction queue if the bra	anch is take	n and one program fetch cy	cie if the branch 1s no	t taken.		
CMPA #opr8/	(A) – (M)	IMM	81 11	P	P		$\Delta \Delta \Delta \Delta$
CMPA opras	Compare Accumulator A with Memory	DIR	91 dd	rPf	rfP		
CMPA dpr16a CMPA dpr16a		EXT	B1 hh 11 A1 xb	r Pf	rop		
CMPA apro9, xy sp		IDX1	Al xb ff	rPO	rPO		
CMPA aprox16,xysp		IDX2	Al xb ee ff	frPP	frPP		
CMPA [D,IVSP] CMPA [oncide recent		[D,IDX]	Al xb	fIfrPf	fIfrfP		
Carry (physiologiab)		linya	AT XD 66 II	TIMINI	TIPTTP		

Table A-1. Instruction Set Summary (Sheet 3 of 14)

EE 308 Spring 2011

Course Cours	Country	Addr.	Machine	Machine Access Detail			1710
Source Form	operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
CMPB #opr8/ CMPB opr8a CMPB opr8a CMPB opr0.ysp CMPB opr0.ysp CMPB opr16.ysp CMPB [0_ysp] CMPB [0_ys16.ysp]	(B) – (M) Compare Accumulator B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	Cl 11 Dl dd Fl hh 11 El xb El xb ff El xb ge ff El xb ge ff El xb ge ff	p rPf rP0 rP1 rP0 frPp flfrPf flfrPf flPrPf	P rfP rOP rfP rPO frPP flfrfP flPrfP		
COM opr182 COM opr0_sysp COM opr0_sysp COM (pr18, sysp COM [0, sysp] COM [0, sysp] COM [0, sysp] COM 2000 COMB	$\begin{array}{l} (M) \longrightarrow M \mbox{ equivalent } D \mbox{ SFF} - (M) \longrightarrow M \\ \mbox{1's Complement Memory Location} \\ (\overline{A}) \longrightarrow A \qquad \mbox{ Complement Accumulator A} \\ (\overline{B}) \longrightarrow B \qquad \mbox{ Complement Accumulator B} \end{array}$	EXT IDX IDX1 IDX2 [D,IDX2] [NH INH	71 hh 11 61 xb 61 xb ff 61 xb ee ff 61 xb ee ff 61 xb ee ff 41 51	rPw0 rPw rPw0 frPwP fIfrPw fIPrPw 0 0	r0Pw rPw rPOw frPPw fifrPw fifrPw 0 0		ΔΔ01
CPD #opr18 CPD qon8a CPD qon18a CPD qon0_yisp CPD qon18_yisp CPD qon18_yisp CPD [opr18_yisp] CPD [opr18_yisp]	(A-B) – (M:M+1) Compare D to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8C jj kk 9C dd BC hh 11 AC xb AC xb ff AC xb ee ff AC xb ee ff AC xb ee ff	PO HPT HPO HPT HPO fHPP flfRPf flfRPf tIPRPf	QD R1P ROP R1P R1P R1P R1P R1P R1P R1P R1P R1P		
CPS #apr18 CPS opr18 CPS opr18a CPS opr0. nysp CPS opr0. nysp CPS opr18. nysp CPS [D, nysp] CPS [D, nysp] CPS [Opr18.nysp]	(SP) – (MLM+1) Compare SP to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jj kk 9F dd BF hh 11 AF xb AF xb ff AF xb ee ff AF xb ee ff	PO HPT HPO HPT HPO fHPP flfRPf flfRPf flFRPf	QO QIR QOR RIP RIP RIP RIP RIP RIP RIP RIP RIP RI		
CPX. #opr18 CPX.opr8a CPX.opr8a CPX.opr0.opsp CPX.opr18.opsp CPX.opr18.opsp CPX.[opr16.opsp] CPX.[opr16.opsp]	(X) – (M-M+1) Compare X to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [D,IDX]	BE jj kk 9E dd BE bh 11 AE xb AE xb ff AE xb gg ff AE xb gg ff	PO RPf RPO HPf RPO fRPP fIfRPf fIFRPf	QD Q1R Q0R Q1R Q1R QQR QQR Q1R Q1R Q1R Q1R Q1R Q1		
CPY #apr18 CPY opr8a CPY opr8a CPY oprx0_xysp CPY oprx18_xysp CPY oprx18_xysp CPY [oprx18_xysp] CPY [oprx18_xysp]	(Y) – (M-M+1) Compare Y to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX2]	8D jj kk 9D dd HD hh 11 AD xb AD xb ff AD xb gg ff AD xb AD xb gg ff	PO RPI RPO RPO fRPP fIRPP fIFRPI fIPRPI	QD R1P ROP R1P R1P R1P R1R1P R1PR1P		
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	010	010		ΔΔ?Δ
DBEQ abdnys, re 9	(critr) – 1→ ontr if (critr) = 0, then Branch else Continue to next instruction Decrement Counter and Branch if = 0 (critr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
DBNE abdxys, rel9	(critr) – 1 → critr if (critr) not – 0, then Branch, else Continue to next instruction Decrement Counter and Branch if ≠ 0 (critr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		

Table A-1. Instruction Set Summary (Sheet 4 of 14)

DBNE

DBNE Decrement and Branch if Not Equal to Zero

Operation $(counter) - 1 \Rightarrow counter$

If (counter) not = 0, then (PC) + $0003 + rel \Rightarrow PC$

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative destination if the counter register does not reach zero. Rel is a 9-bit two's complement offset for branching forward or backward in memory. Branching range is \$100 to \$0FF (-256 to +255) from the address following the last byte of object code in the instruction.

CCR Effects

s	X	н	Т	N	z	V	С
-	-	-	-	-	-	-	١

Code and CPU

Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
DBNE abdxysp, rel9	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)

Loop Primitive Postbyte (1b) Coding							
Source Form	Postbyte ¹	Object Code	Counter Register	Offset			
DBNE A, rel9 DBNE B, rel9 DBNE D, rel9 DBNE X, rel9 DBNE Y, rel9 DBNE Y, rel9 DBNE SP, rel9	0010 X000 0010 X001 0010 X100 0010 X101 0010 X110 0010 X111	04 20 rr 04 21 rr 04 24 rr 04 25 rr 04 26 rr 04 27 rr	A B D X Y SP	Positive			
DBNE A, rel9 DBNE B, rel9 DBNE D, rel9 DBNE X, rel9 DBNE X, rel9 DBNE Y, rel9 DBNE SP, rel9	0011 X000 0011 X001 0011 X100 0011 X101 0011 X101 0011 X110	04 30 rr 04 31 rr 04 34 rr 04 35 rr 04 36 rr 04 37 rr	A B D X Y SP	Negative			

NOTES:

 Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select the counter register.

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
STY opr8a STY opr16a STY opr10_xysppc STY oprx16_xysppc STY oprx16_xysppc STY [oprx16_xysppc]	Store Y (Y _H YL)⇒MtM+1	DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	spdd 7phhll 6pxb 6pxbff 6pxbeeff 6pxb 6pxbeeff	PW PWO PW PWO PWP PIFM PIFM	
SUBA sport8/ SUBA opr6a SUBA opr16a SUBA opr16a SUBA opr16a SUBA (opr16a) SUBA (opr16a) SUBA (opr16a) SUBA (opr16a)	Subtract from A (A)–(M)⇒A or (A)–imm⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	so 11 so dd no hh 11 Ao xb Ao xb ff Ao xb se ff Ao xb se ff	P TPf TPO TPf TPO frPp fifrpf fiprpf	 - ∆∆∆∆
SUB8 ≠opr8/ SUB8 opr5a SUB8 opr16a SUB8 opr16a SUB8 opr2, syspc SUB8 opr16, syspc SUB8 (opr16, syspc SUB8 (opr16, syspc) SUB8 (opr16, syspc)	Subtract from B (B)–(M)⇒B or (B)–imm⇒B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	coll podd Fohhll Eoxb Eoxb Ff Eoxb eeff Eoxb Eoxb	P IPf IPf IPf IPo fifp fifrpf fiprpf	[-]-]-]A]A]A]A
SUBD #opr16/ SUBD opr5a SUBD opr15a SUBD opr02_xtspc SUBD opr16, xtspc SUBD opr16, xtspc SUBD (opr16, xtspc) SUBD (opr16, xtspc)	Subtract from D (A:B)–(M:M+1)⇒A:B or (A:B)–imm⇒A:B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	83 jjkk 93 dd H3 hh 11 A3 xb A3 xb 60 ff A3 xb 60 ff A3 xb 60 ff	PO NPf NPO NPF NPO fipp fifmpf fifmpf	<u></u> -
SWI	Software Interrupt, (SP)-2 \Rightarrow SP RTN _H :RTN ₁ \Rightarrow Mgi:Mgp+1 (SP)-2 \Rightarrow SP; (Y ₁ ,Y ₁) \Rightarrow Mgp:Mgp+1 (SP)-2 \Rightarrow SP; (SY ₁ ,Y ₁) \Rightarrow Mgp:Mgp+1 (SP)-2 \Rightarrow SP; (S:A) \Rightarrow Mgp:Mgp+1 (SP)-1 \Rightarrow SP; (CCR) \Rightarrow Mgp:T \Rightarrow I (SWI vector) \Rightarrow FC	INH	28	VSPSSPSSP*	
"The CPU also uses vspsspss	P for hardware interrupts and unimplement	ed opcode t	raps.	2	2
TAB	Transfer A to B; (A)⇒B	INH	18 08	00	
TAP	Transfer Ato CCR; (A)⇒CCR Assembled as TFR A, CCR	INH	117 02	P	4844444
TBA	Transfer B to A; (B)⇒A	INH	18 05	00	
TBEQ abdkysp,rel9	Test and branch if equal to 0 If (counter)=0, then (PC)+2+rel⇒PC	REL (9-bit)	04 1b rr	PPP (branch) PPO (no branch)	
TBL oprx0_xysppc	Table lookup and interpolate, 8-bit (M)+[(B)×((M+1)−(M))]⇒A	IDX	18 3D XD	ONITIP	
TBNE abdxysp,rel9	Testand branch if not equal to 0 If (counter)≠0, then (PC)+2+rel⇒PC	REL (9-bit)	04 lbrr	PPP (branch) PPO (no branch)	
TFR abcdxysp,abcdxysp	Transfer from register to register (r1)⇒r2r1 and r2 same size \$00:(r1)⇒r2r1=8-bit; r2=16-bit (r1 ₀)⇒r2r1=16-bit; r2=8-bit	INH	n7 eb	2	 or A공자자자자
TPASame as TFR CCR ,A	Transfer CCR to A; (CCR)⇒A	INH	117 20	P	

68HC12 Cycles

- 68HC12 works on **48 MHz clock**
- A processor cycle takes 2 clock cycles P clock is 24 MHz
- Each processor cycle takes **41.7** ns $(1/24 \ \mu s)$ to execute
- An instruction takes from 1 to 12 processor cycles to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the Core Users Guide.

- For example, **LDAA** using the **IMM** addressing mode shows one CPU cycle (of type P).

LDAA using the EXT addressing mode shows three CPU cycles (of type rPO).
Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is doing during each of the different types of CPU cycles.

2000			org \$2000	; Inst	Mode Cycles
2000	C6 0A		ldab #10	; LDAB	(IMM) 1
2002	87	loop:	clra	; CLRA	(INH) 1
2003	04 31 FC	_	dbne b,loop	; DBNE	(REL) 3
2006	3F		swi	; <i>SWI</i>	9

The program executes the **ldab #10** instruction **once** (which takes one cycle). It then goes through loop **10 times** (which has two instructions, on with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

 $1 + 10 \times (1 + 3) + 9 = 50$

 $50 \text{ cycles} = 50 \times 41.7 \text{ ns/cycle} = 2.08 \text{ }\mu\text{s}$

EE 308 Spring 2011

LDAB

Load B

LDAB

Operation $(M) \Rightarrow B$

or imm \Rightarrow B

Loads B with either the value in M or an immediate value.

CCR

Effects

S	х	н	Т	Ν	z	۷	С
-	-	-	-	Δ	Δ	0	-

N: Set If MSB of result is set; cleared otherwise

Z: Set if result is \$00; cleared otherwise

V: Cleared

Code and

CPU Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
LDAB #opr8/	IMM	C6 ii	P
LDAB opr6a	DIR	D6 dd	rPf
LDAB opr16a	EXT	F6 hh 11	rPO
LDAB oprx0_xysppc	IDX	E6 xb	rPf
LDAB oprx16,xysppc	IDX1	E6 xb ff	frPO
LDAB oprx16,xysppc	IDX2	E6 xb ff	firPP
LDAB [D,xysppc]	[D,IDX]	E6 xb ee ff	fifrPf
LDAB [oprx16,xysppc]	[DX2]	E6 xb ee ff	fiPrPf