
 EE 308 Spring 2011

• HC12 Addressing Modes
• Instruction coding and execution

o Inherent, Extended, Direct, Immediate, Indexed, and Relative
Modes

o Summary of MC9S12 Addressing Modes
o Using X and Y registers as pointers
o How to tell which branch instruction to use
o How to hand assemble a program
o Number of cycles and time taken to execute an MC9S12

program

The HCS12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective address:
Memory address used by instruction

Addressing mode:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

REL Relative (used only with branch instructions)

IDX Indexed (won’t study indirect indexed mode)

 EE 308 Spring 2011

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) → A
18 06

CLRA ; Clear A 0 → A
87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) − 0x00 Set CCR
97

The HC12 does not access memory

There is no effective address

 EE 308 Spring 2011

The Extended (EXT) addressing mode

Instructions which give the 16−bit address to be accessed

LDAA $1000 ; ($1000) → A
B6 10 00 Effective Address: $1000

LDX $1001 ; ($1001:$1002) → X
FE 10 01 Effective Address: $1001

STAB $1003 ; (B) → $1003
7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op code

 EE 308 Spring 2011

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) → A
96 20 Effective Address: $0020

STX $21 ; (X) → $0021:$0022
5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op code

 EE 308 Spring 2011

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 ; $17 → A
B6 17 Effective Address: PC + 1

ADDA #10 ; (A) + $0A → A
8B 0A Effective Address: PC + 1

Effective address is the address following the op code

 EE 308 Spring 2011

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)
Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5,Y ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X− ; Post−decrement Indexed

; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X

INC 4,+X ; Pre−increment Indexed

; Add 4 to X
; then increment the number at address (X)

62 23 Effective address: contents of X + 4

 EE 308 Spring 2011

 EE 308 Spring 2011

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES
(Does not include indirect modes)

The data books list three different types of indexed modes:

• Table 4.2 of the Core Users Guide shows details

• IDX: One byte used to specify address

– Called the postbyte
– Tells which register to use
– Tells whether to use autoincrement or autodecrement
– Tells offset to use

• IDX1: Two bytes used to specify address

– First byte called the postbyte
– Second byte called the extension
– Postbyte tells which register to use, and sign of offset
– Extension tells size of offset

• IDX2: Three bytes used to specify address

– First byte called the postbyte
– Next two bytes called the extension
– Postbyte tells which register to use
– Extension tells size of offset

 EE 308 Spring 2011

 EE 308 Spring 2011

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch
Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

BRA 20 35 PC + 2 + 0035 → PC

BRA 20 C7 PC + 2 + FFC7 → PC

 PC + 2 − 0039 → PC

Long branch instruction: Two bytes following op code specifies how far to branch
Treat the offset as an unsigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

LBEQ 18 27 02 1A If Z == 1 then PC + 4 + 021A → PC

If Z == 0 then PC + 4 → PC

When writing assembly language program, you don’t have to calculate offset
You indicate what address you want to go to, and the assembler calculates the offset

0x1020 BRA $1030 ; Branch to instruction at address $1030

 EE 308 Spring 2011

Summary of HCS12 addressing modes

ADDRESSING MODES

A few instructions have two effective addresses:

• MOVB #$AA,$1C00 Move byte 0xAA (IMM) to address $1C00 (EXT)
• MOVW 0,X,0,Y Move word from address pointed to by X (IDX) to address

 pointed to by Y (IDX)

A few instructions have three effective addresses:

• BRSET FOO,#$03,LABEL Branch to LABEL (REL) if bits #$03 (IMM) of variable

 FOO (EXT) are set.

 EE 308 Spring 2011

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

• To initialize pointer use

ldx #table
not

ldx table

• For example, the following loads the address of table ($1000) into X; i.e., X will point
to table:

ldx #table ; Address of table ⇒ X

The following puts the first two bytes of table ($0C7A) into X. X will not point to table:

ldx table ; First two bytes of table ⇒ X

• To step through table, need to increment pointer after use

ldaa 0,x
inx

or
ldaa 1,x+

 EE 308 Spring 2011

Which branch instruction should you use?
Branch if A > B

Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0,

so 0xFF > 0x00

If signed, 0xFF = −1 and 0x00 = 0,

so 0xFF < 0x00

Using unsigned numbers: BHI (checks C bit of CCR)
Branch if Higher (if C + Z = 0)(unsigned)

Using signed numbers: BGT (checks V bit of CCR)

Branch if Greater Than (if Z + (N ⊕ V) = 0) (signed)

For unsigned numbers, use branch instructions which check C bit
For signed numbers, use branch instructions which check V bit

 EE 308 Spring 2011

Hand Assembling a Program
To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go
into memory.
(e.g., org $2000 will put the first instruction at address $2000.)

2. Look at the first instruction. Determine the addressing mode used.
(e.g., ldab #10 uses IMM mode.)

3. Look up the instruction in the MC9S12 S12CPUV2 Reference Manual, find the
appropriate Addressing Mode, and the Object Code for that addressing mode.
(e.g., ldab IMM has object code C6 ii.)

Table 5.1 of S12CPUV2 Reference Manual has a concise summary of the instructions,
addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be
careful to convert decimal operands to hex operands if necessary.
(e.g., ldab #10 becomes C6 0A.)

5. Add the number of bytes of this instruction to the address of the instruction to
determine the address of the next instruction.
(e.g., $2000 + 2 = $2002 will be the starting address of the next instruction.)

 org $2000
 ldab #10
loop: clra
 dbne b,loop
 swi

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

68HC12 Cycles

• 68HC12 works on 48 MHz clock

• A processor cycle takes 2 clock cycles – P clock is 24 MHz

• Each processor cycle takes 41.7 ns (1/24 µs) to execute

• An instruction takes from 1 to 12 processor cycles to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles
for that instruction in the Core Users Guide.

– For example, LDAA using the IMM addressing mode shows one CPU cycle (of
type P).
– LDAA using the EXT addressing mode shows three CPU cycles (of type rPO).
– Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is
doing during each of the different types of CPU cycles.

2000 org $2000 ; Inst Mode Cycles
2000 C6 0A ldab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 04 31 FC dbne b,loop ; DBNE (REL) 3
2006 3F swi ; SWI 9

The program executes the ldab #10 instruction once (which takes one cycle). It then goes
through loop 10 times (which has two instructions, on with one cycle and one with three
cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

1 + 10 × (1 + 3) + 9 = 50

50 cycles = 50 × 41.7 ns/cycle = 2.08 µs

 EE 308 Spring 2011

