- MC9S12 Assembler Directives

- A Summary of MC9S12 Instructions
- Disassembly of MC9S12 op codes
- Number of cycles and time taken to execute an MC9S12 program
- A label is a name assigned to the address of the location counter where the label is defined
- Use of assembler directives
- A summary of MC9S12 instruction
- How to disassemble an MC9S12 instruction sequence

Summary of HCS12 addressing modes
ADDRESSING MODES

Name		Example	Op Code	Effective Address
INH	Inherent	ABA	1806	None
IMM	Immediate	LDAA \#\$35	8635	$\mathrm{PC}+1$
DIR	Direct	LDAA \$35	9635	0x0035
EXT	Extended	LDAA \$2035	B6 2035	0×2035
IDX IDX1 IDX2	Indexed	LDAA 3, x LDAA $30, \mathrm{x}$ LDAA $300, \mathrm{X}$	$\begin{array}{llll} \text { A6 } & 03 & & \\ \text { A } 6 & \text { E0 } & 13 & \\ \text { A6 } & \text { E2 } & 01 & \text { 2C } \end{array}$	$\begin{aligned} & x+3 \\ & x+30 \\ & x+300 \end{aligned}$
IDX	Indexed Postincrement	LDAA 3, $\mathrm{X}+$	A 632	$\mathrm{X} \quad(\mathrm{X}+3 \rightarrow \mathrm{x})$
IDX	Indexed Preincrement	LDAA 3, +X	A6 22\|	$\mathrm{x}+3 \mathrm{l}$ (x+3 \rightarrow x)
IDX	Indexed Postdecrement	LDAA 3, $\mathrm{X}-$	A 6 3D	$\mathrm{X} \quad(\mathrm{X}-3 \rightarrow \mathrm{X})$
IDX	Indexed Predecrement	LDAA 3,-X	A 6 2D	$\mathrm{X}-3 \quad(\mathrm{X}-3 \rightarrow \mathrm{x})$
REL	Relative	BRA \$1050 LBRA \$1F00	$\begin{array}{ll} 20 & 23 \\ 18 & 20 \end{array} \quad \mathrm{EE} \quad \mathrm{CF}$	$\begin{aligned} & P C+2+\text { Offset } \\ & P C+4+\text { Offset } \end{aligned}$

A few instructions have two effective addresses:

- MOVB \#\$AA,\$1C00 Move byte 0xAA (IMM) to address \$1C00 (EXT)
- MOVW 0,X,0,Y Move word from address pointed to by X (IDX) to address pointed to by Y (IDX)

A few instructions have three effective addresses:

- BRSET FOO, \#\$03,LABEL Branch to LABEL (REL) if bits \#\$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

- Registers X and Y are often used to point to data.
- To initialize pointer use

ldx \#table

not

Idx table

- For example, the following loads the address of table (\$1000) into X; i.e., X will point to table:
ldx \#table ; Address of table $\Rightarrow X$
The following puts the first two bytes of table (\$0C7A) into X . X will not point to table:

```
Idx table ; First two bytes of table }=>
```

- To step through table, need to increment pointer after use

Idaa 0,x

inx
or

Idaa 1,x+

$$
\begin{array}{lll}
& \text { org } & \$ 900 \\
\text { table: } & \begin{array}{l}
\text { dc.b } \\
\text { dc.b }
\end{array} & 12,122,-43,0 \\
& \mathrm{a}^{\prime}, \mathrm{b}^{\prime},{ }^{\prime} \mathrm{c}^{\prime},{ }^{\prime} \mathrm{d}^{\prime}
\end{array}
$$

Which branch instruction should you use?
Branch if A>B
Is $0 \mathrm{xFF}>0 \mathrm{x} 00$?

If unsigned, $0 x F F=255$ and $0 x 00=0$,
so $0 \mathrm{xFF}>0 \mathrm{x} 00$
If signed, $0 \times \mathrm{xF}=-1$ and $0 \mathrm{x} 00=0$,

$$
\text { so } 0 x F F<0 x 00
$$

Using unsigned numbers: BHI (checks C bit of CCR)
Using signed numbers: BGT (checks V bit of CCR)
For unsigned numbers, use branch instructions which check C bit
For signed numbers, use branch instructions which check V bit

Hand Assembling a Program
To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go into memory.
(e.g., org $\mathbf{\$ 2 0 0 0}$ will put the first instruction at address $\mathbf{\$ 2 0 0 0}$.)
2. Look at the first instruction. Determine the addressing mode used. (e.g., Idab \#10 uses IMM mode.)
3. Look up the instruction in the MC9S12 S12CPUV2 Reference Manual, find the appropriate Addressing Mode, and the Object Code for that addressing mode.
(e.g., Idab IMM has object code C6 ii.)

- Table A. 1 of the S12CPUV2 Reference Manual has a concise summary of the instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary.
(e.g., Idab \#10 becomes C6 0A.)
5. Add the number of bytes of this instruction to the address of the instruction to determine the address of the next instruction.
(e.g., $\mathbf{\$ 2 0 0 0} \mathbf{+ 2} \mathbf{=} \mathbf{\$ 2 0 0 2}$ will be the starting address of the next instruction.)
org \$2000
ldab \#10
loop: clra
dbne b,loop
swi

Table A-1. Instruction Set Summary (Sheet 7 of 14)

Source Form	Operation	Addr. Mode	$\begin{gathered} \text { Machine } \\ \text { Coding (hex) } \end{gathered}$	HCS12	M58HC12	SXHI	NZVC
LEGT M13	Long Branch I Greater Than $\left.\left[\begin{array}{l}\mathrm{Z} \\ \mathrm{Z}\end{array} \mathrm{N} \oplus \mathrm{V}\right)=0\right]$ (slgnad)	REL	182 Eqg IT	OWD/ORO ${ }^{1}$	OPVD/ONO ${ }^{1}$	----	----
LEH relt 6	Long Branch I Higher (f $\mathrm{C}+\mathrm{Z}=$ o) (unsigned)	REL	$18 \quad 22 \mathrm{qq} \mathrm{Ir}$	OWD/ORO ${ }^{1}$	OVED/ORO ${ }^{1}$	----	----
LEHS for 13	Long Branch 1 Higher or Same [f $\mathrm{C}=\mathrm{O}$) (unsigned) seme function as LBCC	REL	1824 qq Ir	OWD/000 ${ }^{1}$	ODVD/ONO ${ }^{\text {P }}$	----	----
LELE fal 15	Long Branch 1 Less Than or Equal 	REL	182 Fqq rr	OWP/OPO ${ }^{1}$	ODED/ODO ${ }^{1}$	----	----
LELO re' 16	Long Branch It Lowes (f) C - 1) (unsigned) same furction as LBCS	REL	1825 qq Ir	OWD/ODO ${ }^{1}$	OVED/ODO ${ }^{\text {d }}$	----	--
LELS [9116	Long Branch 1 Lower or Same [f $\mathrm{C}+\mathrm{Z}=1$) (unslgned)	REL	$18 \quad 23 \mathrm{qq} \mathrm{Ir}$	OWD/ODO ${ }^{1}$	ODPD/ODO ${ }^{1}$	----	----
LBLT refl6	Long Branch il Less Than [f $\mathrm{N} \oplus \mathrm{V}=1$) (signed]	REL	$18 \mathrm{2d}$ qq rr	OWD/000 ${ }^{1}$	ODVP/ODO ${ }^{1}$	----	--
LEM relf 6	Long Branch I M Mius (fiN = 1)	REL	$18 \mathrm{2B} \mathrm{qq} \mathrm{Ir}$	OFPD/001 ${ }^{1}$	OPDP/ODO	-	-
LENE g16	Long Eranch i Not Equal (1 $\mathrm{Z}=0$)	REL	1826 qq Ir	OFPD/000 ${ }^{1}$	OPVP/ODO ${ }^{\text {a }}$	----	--
LEPL \% ${ }^{\text {P15 }}$	Long Branch 1 Pus (f $\mathrm{N}=0$)	REL	182 Aqq Ir	OFPD/ODO ${ }^{1}$	OPDP/ODO ${ }^{\text {a }}$	-	-
LERA mal 16	Long Branch AlwEys (f 1m)	REL	1820 qq rr	Cow	ODVD	----	-
LERN relf6	Long Branch Never (filo)	REL	1821 qq rr	000	ODO	----	----
LEVC 015	Long Branch 1 Overfiow Bt Clear (f V-0)	REL	182 g qq Ir	OFP/ $/ 0.0{ }^{1}$	OPVD/ODO ${ }^{1}$	-	-
LEVS rel 16	Long Eranch I Overfiow Bt Set (\% V = 1)	REL	1829 qq rr	Omp/cio ${ }^{1}$	OPVP/ODO ${ }^{2}$	--	----
LDAA topr 9 LDAA qpBa LDAA qrife LDAA qMOD $x y s p$ LDAA qpo9. ysp LDAA quafig.ysp LDAA [D,ysp] LDAA [quaf $6 . y s p$]	$\mid \mathrm{M}) \neq \mathrm{A}$ Loed Accurnulator A	IMM DIR EXT IDX IDX1 IDX2 $[D, I D X]$ [IDXZ]		D rDI rDO rDI rDO IrDD IIIrDI IIPIDI	D rID rOD rID rDD ITDD ITITID IIDRID	----	$\triangle \triangle 0-$
LDAB soprg LDAB quBa LDAB qifice LDA日 q000 $x y s$ LDAB qu99.ysp LDAB quat 6 ysp LDA日 [D,ysp] LDAB [pori $6 y s p$]	$\left\lvert\, \begin{aligned} & \mathrm{V}) \Rightarrow \mathrm{B} \\ & \text { Loed Accurulator B } \end{aligned}\right.$	IMM DIR EXT IDX IDX1 IDX2 $[D, I D X]$ $[I D X Z]$		I rDI rDO rDI rDO ITPD IIfrDI IIDrDI	D rID rOD rID rDO ITDD IITIID IIDRID	----	$\triangle \triangle 0$ -
	$\begin{aligned} & \mathrm{M}(\mathrm{M}+1) \Rightarrow \mathrm{A} \cdot \mathrm{~B} \\ & \text { Loed Doubla Accumulator } \mathrm{D}(\mathrm{~A} B) \end{aligned}$	IMM DIR EXT DX IDX1 IDX2 $[D, I D X]$ $[I D X Z]$				----	$\triangle \triangle 0$ -

LDS apria	$(\mathrm{M} M+1) \Rightarrow \mathrm{SP}$	IVM	CF 11 kk	DO	OD	---	$\triangle \triangle 0-$
LDS qrila	Loed Stack Pointer	DIA	De di	RDE	PID		
LDS qriba		EXT	FF th 11	H20	RLD		
LDS 9000 y ysp		1DX	EF xb	RDE	M10		
LDS pon9yys		IDX1	EF xb it	Pro	300		
LDS quat 6 ysp		IDX2	EF xb ac [1	IFOD	E3D2		
LDS [D, yspp]		[D, IDX]	$\text { EF } \mathrm{xb}$	SITRDI	E1E301		
LDS [0 ¢rxi6.ysp]]		[1DXZ]	EF xb act It	E1PMDI	TIESID		
LDX appia	$(\mathrm{M} M+1) \Rightarrow \mathrm{X}$	IVM	CE 11 kx	DO	CD	----	$\triangle \triangle 0-$
LDX ¢0.39	Load Indax Aegister X	DIA	DE dd	HDE			
LDX qpr18a		EXT	FE ht 11	PRO	BLD		
LDX POOD y ysp		DX	EE xb	RDP	R10		
LDX apagyysp		IDX1	ER ED 21	1850	3 BDO		
LDX quat $6 . y \leq p$		IDX2	EP xb ad f1	IEOD	S300		
LDXX [D,ysp]		[D, IDX]	EE Eb	ITIMDI	TIERAD		
LDX [0pryis,ysp]		[IDXZ]	EE xb ac ft	SIPSD	ETVITD		

Table A－1．Instruction Set Summary（Sheet 3 of 14）

Source Form	Operation	Addr． Mode	$\begin{aligned} & \text { Machine } \\ & \text { Coding (rex) } \end{aligned}$	HCS12	M63HC12	SXHI	NZVC
BLS meg	Eranch 1 Lower or Same （f $\mathrm{C}+\mathrm{Z}=1$ ）（unsigned）	REL	23 Ir	DW／D ${ }^{1}$	DW／D ${ }^{1}$	－－－－－	－－－－
BLT mg	Brarch i Less Than ［ $\mathrm{f} \mathrm{N} \oplus \mathrm{V}=1$ ）（ slgned ］	REL	2 DIT	DWP／D	NWP／D ${ }^{2}$	－－－－	－－－－
BMI 918	Eranch I Minus（iN＝1）	REL	2 BrI	VWP／D ${ }^{1}$	VW／D ${ }^{2}$	－－－－－	－－－－－
ENE Reg	Eranch 1 Not Equal（if $\mathrm{z}=0$ ）	REL	26 II	DW／ D^{1}	DW／D ${ }^{2}$	－－－－	－－
BPL me9	Erarch If Plis（ $\mathrm{IN}=0$ ）	REL	2A II	DWP／D ${ }^{\text {a }}$	DWF／D ${ }^{2}$	－－－－	－－
BRARER	Erarch Always［ 11 －1）	REL	20 II	DW	DVD	－－－－	－－
	$\begin{aligned} & \text { Erarch it }(M) \text { • }(\mathrm{mr})=0 \\ & (\mathrm{f} \text { Al Selected Bt }(5) \text { Clear }) \end{aligned}$	DIR EXT IDX IDX1 IDX2		$\begin{array}{\|l} \hline r W D \\ \text { rIDVD } \\ \text { rWp } \\ \text { rIDWD } \\ \text { DrIDVD } \end{array}$	$\begin{array}{r} \text { rDVD } \\ \text { repDD } \\ \text { rDVD } \\ \text { reEDVD } \\ \text { frDe } \end{array}$	－－－－	－－－－
BRN ralg	Brarch Never（if 1 － 0 ）	REL	21 II	D	D	－－－－	－
	Branch I（ $(\mathrm{V}) \cdot(\mathrm{mm})=0$ （t Al Selected Bt（3）Set）	DIA EXT IDX IDX1 IDX2	4E dd mn II 1E Mh 11 mm Ir 樶 xb mir IT 呎 xb If mm IT 㫙 xb Qe If mm IT	$\begin{array}{\|l} \hline r W D \\ \text { rIPVD } \\ \text { rWP } \\ \text { rIDPD } \\ \text { DrIDVD } \end{array}$	$\begin{array}{r} \text { rDVD } \\ \text { revVD } \\ \text { rDVD } \\ \text { rfepVD } \\ \text { frDEEDVD } \end{array}$	－－－－	－－－－
BSET qurg，mskg BSET qritie，mskg BSET qOOD $x y$ sp mskg BSET q009，ysp，mskg BSET quar $6 . y s p$ mskg	$\begin{aligned} & (\mathrm{M})+(\mathrm{mm}) \Rightarrow \mathrm{M} \\ & \text { See: } \mathrm{B}=(\mathrm{s}) \text { in Memory } \end{aligned}$	$\begin{aligned} & \hline \mathrm{DIR} \\ & \mathrm{EXT} \\ & \mathrm{IDX} \\ & \mathrm{IDX1} \\ & \operatorname{IDX2} \end{aligned}$		$\begin{aligned} & \text { rNWO } \\ & \text { rNWD } \\ & \text { rNWO } \\ & \text { rNVD } \\ & \text { rrDWDO } \end{aligned}$	IDON IDNN INON IDWD ITDWCD	－－－－	$\triangle \triangle 0$－
BSR mg	$\begin{aligned} & \left.[S P)-2 \Rightarrow S_{P} ; \text { RTN }_{4} \mathrm{RTN}_{\mathrm{L}} \Rightarrow \mathrm{M}_{(3 P}\right)_{(S P+1)} \\ & \text { Subrouthe address } \Rightarrow \mathrm{PC} \\ & \text { Branch to Subrouthe } \end{aligned}$	REL	07 II	SDPV	DPDS	－－－	－－－－
BVCres	Eranch 1 Overflow Bt Ciear（ P V－ 0 ）	REL	28 IF	DWV／D ${ }^{\text {a }}$	WW／D ${ }^{2}$	－	－－－－
BVS reg	Eranch 1 Overflow Bt Set（in $\mathrm{V}=1$ ）	REL	29 II	DWP／D ${ }^{\text {d }}$	DWP／D ${ }^{2}$	－－－－－	－－－－
CALL opice，page CALL opro ysp，page CALL opx 9 yspp，page CALL opr 15xysp，page CAll［D，yss］ CALL［porf 6 xsp］		$\begin{gathered} \hline E X T \\ I D X \\ I D X 1 \\ I D X 2 \\ {[D, I D X]} \\ {[1 D X Z]} \end{gathered}$	4A Hh 11 pg 4 B xb pg 4 B xb fI pg 4 B xb ac fI pg 4 B xb 4 B xb ac ft	gnSaDVD gn3sDVD gnSaDVP fgnSamp fIIgnSappp fIIgnSappp		－－－－	－
CBA	（A）－（B） Compare B．at accuruators	NH	1817	00	00	－－－－	$\triangle \Delta \Delta \Delta$
CLC	$\begin{aligned} & 0 \Rightarrow \mathrm{C} \\ & \text { Translagto } \text { ANDCC } \pm \text { \&FE } \end{aligned}$	IVM	10 FE	D	－	－－－－	－－－0
CL		IVM	10 ZF	D	D	－－－0	－－－－
CLR qifice CLR 9000 xjsp CLR qua9，ysp CLR porisuysp CLR Dysp CLR［porifysp］ CLAA CLRB	$0 \Rightarrow \mathrm{M}$ Clear Memory Locabon $0 \Rightarrow \mathrm{~A}$ Clear Accurnulator A $0 \Rightarrow \mathrm{~B}$ Clear Accurnulator B	EXT IDX IDX1 IDX2 ［D，IDX］ $[I D X Z$ NH NH		DwO Dw DWO DwD DIIU DIDU 0 D	WOD Dw DWO DWD DIEDw DIDPw 0 0	－－－	0100
CLV	$0 \Rightarrow V$ Transtasto ANDCC $45 F D$	IVM	10 FD	D	D	－－－－	－－0－
Note 1．PPPAP indcatas tris instuction takes three cycies to refil fre instuction queua if the branch is taken and one program fetch cycie if the branch is not taken．							
	$(\mathrm{A})-(\mathrm{M})$ Compare Accurulator A with Marory	IMM DIA EXT IDX IDX1 $[D X 2$ $[D, I D X]$ $[D X Z]$		D IDI rDO IDI IDO ITDD IIITDI IIDrDI		－－－－	$\triangle \Delta \Delta \Delta$

New Mexico Institute of Mining and Technology
EE 308 Spring 2011

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form	Operation	Addr. Mode	$\begin{aligned} & \text { Machine } \\ & \text { Coding (nex) } \end{aligned}$	HCS12	M6aHC12	SXHI	NZVC
	$\begin{aligned} & {[\mathrm{B})-(\mathrm{M}]} \\ & \text { Corpare Accurnulator B wth Memory } \end{aligned}$	IMM DIR EXT IDX IDX1 IDX2 $[D, I D X]$ $[I D X Z]$		ICSIR IDI rDO rDI rDO ITDD IIITDI IIDIDI	D $r \pm D$ $r C D$ $r I D$ $r D O$ TrDD TITrID TIDrID	-----	$\triangle \Delta \Delta \Delta$
CON oprite CON opno_ysp CON opn9,ysp CON opri6. $x y s p$ CON $0, y y s p]$ CON [quif $6 y s p]$ CONA CONB	(V) $\Rightarrow \mathrm{M}$ equinelert D \$FF $-(\mathrm{M}) \Rightarrow \mathrm{M}$ 1s Complenent Memory Location $(\bar{A}) \rightarrow A$ Complerent Accuruator A $(\mathrm{B}) \Rightarrow \mathrm{B}$ Complement Accuruator B	EXT IDX IDX1 IDX2 $[\mathrm{D,IDX]}$ $[I D X Z]$ NH NH	71 xh 11 61 xb 61 xb If 61 xb aa If 61 xb 61 xb ac ft 41 51	$\begin{aligned} & \hline \text { rNW0 } \\ & \text { rNv } \\ & \text { rDW0 } \\ & \text { IrDWD } \\ & \text { IIIrDw } \\ & \text { IIDrDw } \\ & 0 \\ & 0 \end{aligned}$		----	A 401
	$\begin{aligned} & (\mathrm{A} \cdot \mathrm{~B})-(\mathrm{M}+\mathrm{M}+1) \\ & \text { Compare } \mathrm{D} \text { to Mamory (16-Bt) } \end{aligned}$	IMM DIA EXT IDX IDX1 IDX2 $[D, I D X]$ $[I D X Z]$	$B C$ 11 kk $9 C$ $d 1$ $B C$ zh 11 $A C$ $x b$ $A C$ $x b$ $2 f$ $A C$ $x b$ $a 0$ $A C$ $x b$ $A C$ $x b$ $a c$	DO RDI RDO FDI HDO IROD IIIPDI IIDRDI		----	$\triangle \Delta \Delta \Delta$
	$\begin{aligned} & (\mathrm{SP})-(\mathrm{M} \mathrm{~N}+1) \\ & \text { Corpare SP to Manory (16-Bt) } \end{aligned}$	INM DIR EXT DX IDX1 IDX2 $[D, I D X]$ $[I D X Z]$			$C D$ RID ROD RID RDD EMDD TITMAD TIMAPD	----	$\triangle \Delta \Delta \Delta$
	$\begin{aligned} & (X)-(M M+1) \\ & \text { Compere } X \text { to Merary }(16-\mathrm{Bt}) \end{aligned}$	IMM DIR EXT IDX IDX1 IDX2 $[D, 1 D X]$ $[I D X Z]$		DO RDI RDO RDI RDO IFPD ITIMRI IIDMDI		----	$\triangle \Delta \Delta \Delta$
	$\begin{aligned} & (\mathrm{Y})-(\mathrm{MM}+1) \\ & \text { Compare Y tD Menary (16-日t) } \end{aligned}$	INM DIR EXT DX IDX1 IDX2 $[D, I D X]$ $[I D X Z]$			$C D$ RID ROD RID RDD EMDD TITKPD TIDMAD	----	$\triangle \Delta \Delta \Delta$
DAA	Aduas Sum to BCD Decinal Adust Accumulator A	NH	$18 \quad 07$	Oro	010	--	$\Delta \Delta ? \Delta$
DEEQ abdiys, re9		REL (9-5t)	04 1b IT	$\begin{aligned} & \text { VW (branch) } \\ & \text { VDO (no } \\ & \text { branch) } \end{aligned}$	DND	--	----
DENE abdys, ral9		$\begin{aligned} & \text { REL } \\ & (9-b t) \end{aligned}$	04 1b IT	$\begin{aligned} & \text { VW (branch) } \\ & \text { DVO (no } \\ & \text { branch) } \end{aligned}$	DND	---	---

Souroe Form	Operation	$\begin{array}{c\|} \hline \text { Addrece } \\ \text { Mode } \end{array}$	Msohling Coding (Hex)	Aooece Datall	SXHINZVC
STY ocr8a STY ocri6a STY ocroD_xyapp STY oorr9, xyapoc STY oorr16,xyappc STY [D,xysppd] STY [oprx $16, x y s p p d]$	3tore Y $\left(\gamma_{1+}-\gamma_{L}\right) \Rightarrow M C M+1$		sDdd 7nhh 11 6D xb ED xb ff 6Dxbenff 6D Xb 6Dxbonff		- - - - ${ }^{\text {a }}$
SUBA\#oprSI SUEA oprks SUEA opri6s SUBA opmo_xympa SUBA opne9,xyspoc SUBA oprif $6, x y$ gpp SUEA [D, xyappc] SUBA [oprri6, ryspoc]]	$\begin{aligned} & \text { Subtract fom } A \\ & (A)-M)=A \\ & \text { or }(A)-m m \Rightarrow A \end{aligned}$				
SU 5 E \#oprsi SUeB oprss suab opri6s SUSB opro_ xyspoc SUSB opn9, xy appc SUEB opxif, rysppc SUSB [D, xуappc] SUaB [opry 16 , ryzpoc]	$\begin{aligned} & \text { Subtract fom } \mathrm{B} \\ & \text { (B)-M) } \mathrm{M}) \mathrm{B} \\ & \text { or }(\mathrm{B})-\mathrm{mm} \Rightarrow \mathrm{~B} \end{aligned}$	DMM DIR EXT DX DX1 DX2 DJI DDX] DOX2] DM			
SUED *oprisi SUED oprBa SUED opri6a SUSD opro_xysppc SUED opms, xysppc SUED oprri6,xysppc SUED [D_ryzppc] SUSD [oprri6,xyzppc]	Subtract from D $(A \cdot B)-(M) M+1)=A \cdot B$ or $(A B)-i m m=A \cdot B$				
SWI	Software interrupt (SP)-2 \rightarrow SP RTN $N_{H}:$ RTN $_{L} \Rightarrow M_{\mathrm{gp}} \mathrm{M}_{\mathrm{gP}}+1$	NH	${ }^{3}$	vaparvarp*	
"The CPU also uses vapasmasp for hardware interrupts and unimplemented opcode traps.					
TAB	Tranzfer $\mathrm{A} 00 \mathrm{~B} ;(\mathrm{A})=\mathrm{B}$	NH	1808	-	- -H- ${ }^{\text {a }}$
TAP	Transfer Ato CCR; (A) $=$ CCR Assembled as TFRA, OCR	NH	11702	P	
TBA	Transfer Bto $\mathrm{A} ;(\mathrm{B})=\mathrm{A}$	NH	1808	-	- - - - ${ }^{\text {a }}$
TBEQ abctrysprel9	$\begin{aligned} & \text { Teat and branch if equas to } 0 \\ & \text { if (courter) }=0 \text {, then (PC) } 12 \text { tre) } P \mathrm{FC} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{REL} \\ (9-\mathrm{bI}) \end{array}$	041 brr	$\begin{aligned} & \text { Wov (branch) } \\ & \text { wo (no branch) } \end{aligned}$	- - - - - -
TBL opnos_ryspoc	Table lookup and interpolate, 8 -bt $(M)+[1 B) \times(M+1)-(M) D] S A$	DX	1830xb	cutets	
TBNE aboxyzp,rel9	Teat and branch If not equal to 0 If (counter) 0 , then (PC) $+2+$ rel $\Rightarrow \mathrm{PC}$	$\begin{aligned} & \mathrm{REL} \\ & (9-\mathrm{bR}) \end{aligned}$	041 lrr	PVy (branch) PDO (no branch)	W-H-T-
TFR abcotrysp, abcorysp	Transfer fom regleterto register $(r 1) \Rightarrow \mathrm{r} 2 \mathrm{r} 1$ and r 2 same alze $\$ 00:(\mathrm{r} 1) \Rightarrow \mathrm{r} 2 \mathrm{r} 1-9-\mathrm{b} / \mathrm{t}, \mathrm{r} 2=16-\mathrm{b} / \mathrm{t}$ $\left(\mathrm{ri}_{1}\right)=r 2 \mathrm{r} 1=15-\mathrm{blt}, \mathrm{r} 2-3-\mathrm{blt}$	NH	mi ab	P	
TPASame as TFR CCR,A	Transfer CCR to $A ;(C C R)=A$	NH	11720	P	W-H-N-H-6

DBNE

Operation (counter) $-1 \Rightarrow$ counter
If (counter) not $=0$, then $(\mathrm{PC})+\$ 0003+\mathrm{rel} \Rightarrow \mathrm{PC}$
Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative destination if the counter register does not reach zero. Rel is a 9-bit two's complement offset for branching forward or backward in memory. Branching range is $\$ 100$ to $\$ 0 \mathrm{FF}$ $(-256$ to +255$)$ from the address following the last byte of object code in the instruction.
CCR
Effects

Code and
CPU
Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
DENE abdxysp, rel9	REL (9-blt)	04 lb rr	PPP (branch) PPO (no branch)

Loop Primitive Postbyte (1b) Coding				
Source Form	Postbyte ${ }^{1}$	Object Code	Counter Register	Offset
DBNE A. rel9 DBNE B, rel9 DENE D, re/9 DBNE X, rel9 DENE Y, rel9 DBNE SP, re/9	0010×000 0010×001 0010×100 0010×101 0010×110 0010×111	0420 Ir 0421 Ir 0424 Ir 0425 rr 0426 II 0427 II	A B D X Y S SP	Posilive
DBNE A, rel9 DENE B, re/9 DBNE D, rel9 DENE X, rel9 DENE Y, re/9 DENE SP, rel9	0011 X000 0011×001 0011×100 0011×101 0011 X110 0011 X111	0430 rr 0431 rr 0434 rr 0435 rr 0436 rr 0437 rr	A B D X Y SP	Negative

NOTES:

1. Bits $7: 6: 5$ select DBEQ or DBNE; bit 4 is the offset slgn bit: bit 3 is not used; bits 2:1:0 select the counter register.

MC9S12 Cycles

- MC9S12 works on 48 MHz clock
- A processor cycle takes 2 clock cycles - \mathbf{P} clock is 24 MHz
- Each processor cycle takes $41.7 \mathbf{n s}(1 / 24 \mu \mathrm{~s})$ to execute
- An instruction takes from $\mathbf{1}$ to $\mathbf{1 2}$ processor cycles to execute
- You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the Reference Manual.
- For example, LDAA using the IMM addressing mode shows one CPU cycle (of type P).
- LDAA using the EXT addressing mode shows three CPU cycles (of type rPO). - Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is doing during each of the different types of CPU cycles.

2000			org \$2000	; Inst	Mode Cycles
2000	C6 0A		ldab \#10	; LDAB	(IMM) 1
2002	87	loop:	clra	; CLRA	(INH) 1
2003	0431 FC		dbne b,loop	; DBNE	(REL) 3
2006	3F		swi	; SWI	9

The program executes the ldab \#10 instruction once (which takes one cycle). It then goes through the loop 10 times (which has two instructions, one with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:
$1+10 \times(1+3)+9=50$

50 cycles $=50 \times 41.7 \mathrm{~ns} /$ cycle $=2.08 \mu \mathrm{~s}$

LDAB

Assembler Directives

- In order to write an assembly language program it is necessary to use assembler directives.
- These are not instructions which the HC 12 executes but are directives to the assembler program about such things as where to put code and data into memory.
- We will use only a few of these directives. (Note: In the following table, [] means an optional argument.) Here are the ones we will need:

Directive Name	Description	Example
equ	Give a value to a symbol	len: equ 100
org	Set starting value of location counter where code or data will go	org \$1000
dc.b	Allocate and initialize storage for 8-bit variables. Place the bytes in successive memory locations	var: dc.b 2,18 name: dc.b "Jane"
dc.w	Allocate and initialize storage for 16-bit variables. Place the bytes in successive memory locations	var: dc.w \$ABCD
ds.b	Allocate specified number of 8-bit storage places	Table: ds.b 10
ds.w	Allocate specified number of 16-bit storage spaces	table: ds.w 50
dcb.b	Fill memory with a given value The first value is the number of bytes to fill. The second number is the value to put into memory	init_data: dc.b 100,0

Using labels in assembly programs
A label is defined by a name followed by a colon as the first thing on a line. When the label is referred to in the program, it has the numerical value of the location counter when the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

```
    org $2000
table1:dc.b $23,$17,$f2,$a3,$56
table2: ds.b 5
var: dc.w $43af
```

The CodeWarrior assembler produces a listing file (.lst). Here is the listing file from the assembler:

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs.	Rel.	Loc	Obj. code	Source line		
1	1				org	\$2000
2	2 a 0020002317 F2A3			table1:	dc.b	\$23,\$1
3	3 a 0	005		table2:	ds.b	5
4	4 a 00	00A 43		var:	dc.w	\$43af

Note that table1 is a name with the value of $\$ 2000$, the value of the location counter defined in the org directive. Five bytes of data are defined by the dc.b directive, so the location counter is increased from \$2000 to \$2005.

Note that table2 is a name with the value of $\$ 2005$. Five bytes of data are set aside for table2 by the ds.b 5 directive. The as 12 assembler initialized these five bytes of data to all zeros. var is a name with the value of $\$ 200$ a, the first location after table2.

HC12 Instructions

1. Data Transfer and Manipulation Instructions - instructions which move and manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).

- Load and Store - load copy of memory contents into a register; store copy of register contents into memory.

LDAA \$2000 ; Copy contents of addr \$2000 into A
STD 0,X ; Copy contents of D to addrs X and X+1

- Transfer - copy contents of one register to another.

TBA ; Copy B to A
TFR X,Y ; Copy X to Y

- Exhange - exchange contents of two registers.

XGDX ; Exchange contents of D and X
EXG A,B ; Exchange contents of A and B

- Move - copy contents of one memory location to another.

MOVB $\$ 2000, \$ 20 \mathrm{~A} 0$; Copy byte at $\$ 2000$ to $\$ 20 \mathrm{~A} 0$
MOVW 2,X+,2,Y+ ; Copy two bytes from address held ; in X to address held in Y ; Add 2 to X and Y
2. Arithmetic Instructions - addition, subtraction, multiplication, divison (S12CPUV2

Reference Manual, Sections 5.6, 5.8 and 5.12).
ABA ; Add B to A; results in A
SUBD \$20A1; Subtract contents of \$20A1 from D
INX ; Increment X by 1
MUL ; Multiply A by B; results in D
3. Logic and Bit Instructions - perform logical operations (S12CPUV2 Reference

Manual, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).

- Logic Instructions

ANDA $\$ 2000$; Logical AND of A with contents of $\$ 2000$
EORB 2,X ; Exclusive OR B with contents of address (X+2)

- Clear, Complement and Negate Instructions

NEG -2,X ; Negate (2 's comp) contents of address (X-2)
CLRA ; Clear Acc A

EE 308 Spring 2011

- Bit manipulate and test instructions - work with one bit of a register or memory.

BITA \#\$08 ; Check to see if Bit 3 of A is set
BSET \$0002,\#\$18 ; Set bits 3 and 4 of address \$002

- Shift and rotate instructions
$\begin{array}{ll}\text { LSLA } & \text {; Logical shift left A } \\ \text { ASR \$1000 } & \text {; Arithmetic shift right value at address \$1000 }\end{array}$

4. Compare and test instructions - test contents of a register or memory (to see if zero, negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.) (S12CPUV2 Reference Manual, Section 5.9).

TSTA ; (A)-0 -- set flags accordingly
CPX \#\$8000 ; (X) - \$8000 -- set flags accordingly
5. Jump and Branch Instructions - Change flow of program (e.g., goto, it-then-else, switch-case) (S12CPUV2 Reference Manual, Sections 5.19, 5.20 and 5.21).

JMP L1 ; Start executing code at address label L1
BEQ L2 ; If Z bit set, go to label L2
DBNE X,L3 ; Decrement X; if X not 0 then goto L3
BRCLR \$1A,\#\$80,L4 ; If bit 7 of addr \$1A clear, go to label L4
JSR sub1 ; Jump to subroutine sub1
RTS ; Return from subroutine
6. Interrupt Instructions - Initiate or terminate an interrupt call (S12CPUV2 Reference Manual, Section 5.22).

- Interrupt instructions

SWI ; Initiate software interrupt
RTI ; Return from interrupt
7. Index Manipulation Instructions - Put address into X, Y or SP, manipulate X, Y or SP (S12CPUV2 Reference Manual, Section 5.23).

ABX ; Add (B) to (X)
LEAX 5,Y ; Put address (Y) + 5 into X
8. Condition Code Instructions - change bits in Condition Code Register (S12CPUV2 Reference Manual, Section 5.26).

ANDCC \#\$f0 ; Clear N, Z, C and V bits of CCR
SEV ; Set V bit of CCR
9. Stacking Instructions - push data onto and pull data off of stack (S12CPUV2

Reference Manual, Section 5.24).
PSHA ; Push contents of A onto stack
PULX ; Pull two top bytes of stack, put into X
10. Stop and Wait Instructions - put MC9S12 into low power mode (S12CPUV2 Reference Manual, Section 5.27).

STOP ; Put into lowest power mode
WAI ; Put into low power mode until next interrupt
11. Null Instructions

NOP ; No operation
BRN ; Branch never
12. Instructions we won't discuss or use - BCD arithmetic, fuzzy logic, minimum and maximum, multiply-accumulate, table interpolation (S12CPUV2 Reference Manual, Sections 5.7, 5.16, 5.17, and 5.18).

Disassembly of an HC12 Program

- It is sometimes useful to be able to convert HC12 op codes into mnemonics.

For example, consider the hex code:
ADDR DATA
1000 C6 05 CE 2000 E6 0118060435 EE 3F

- To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.
- If the first byte of the instruction is anything other than \$18, use Sheet 1 of Table A.2. From this table, determine the number of bytes of the instruction and the addressing mode. For example, \$C6 is a two-byte instruction, the mnemonic is LDAB, and it uses the IMM addressing mode. Thus, the two bytes C6 05 is the op code for the instruction LDAB \#\$05.
- If the first byte is $\mathbf{\$ 1 8}$, use Sheet 2 of Table A.2, and do the same thing. For example, $\mathbf{1 8 0 6}$ is a two byte instruction, the mnemonic is ABA, and it uses the INH addressing mode, so there is no operand. Thus, the two bytes $\mathbf{1 8} \mathbf{0 6}$ is the op code for the instruction ABA.
- Indexed addressing mode is fairly complicated to disassemble. You need to use Table A. 3 to determine the operand. For example, the op code \$E6 indicates LDAB indexed, and may use two to four bytes (one to three bytes in addition to the op code). The postbyte 01 indicates that the operand is 0,1 , which is 5 -bit constant offset, which takes only one additional byte. All 5-bit constant offset, pre and post increment and decrement, and register offset instructions use one additional byte. All 9-bit constant offset instructions use two additional bytes, with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction bit, which is held in the first postbyte.) All 16-bit constant offset instructions use three postbytes, with the 2nd and 3rd holding the 16-bit unsigned offset.
- Transfer (TFR) and exchange (EXG) instructions all have the op code \$B7. Use Table A. 5 to determine whether it is TFR or an EXG, and to determine which registers are being used. If the most significant bit of the postbyte is $\mathbf{0}$, the instruction is a transfer instruction.
- Loop instructions (Decrement and Branch, Increment and Branch, and Test and Branch) all have the op code $\mathbf{\$ 0 4}$. To determine which instruction the op code $\mathbf{\$ 0 4}$ implies, and whether the branch is positive (forward) or negative (backward), use Table A.6. For example, in the sequence $\mathbf{0 4} 35$ EE, the 04 indicates a loop
instruction. The 35 indicates it is a DBNE \mathbf{X} instruction (decrement register \mathbf{X} and branch if result is not equal to zero), and the direction is backward (negative). The $\mathbf{E E}$ indicates a branch of -18 bytes.
- Use up all the bytes for one instruction, then go on to the next instruction.

C6 05	\Rightarrow LDAA \#\$05	two-byte LDAA, IMM addressing mode
CE 2000	\Rightarrow LDX \#\$2000	three-byte LDX, IMM addressing mode
E6 01	\Rightarrow LDAB 1,X	two to four-byte LDAB, IDX addressing mode. Operand $01=>1, \mathrm{X}$, a 5 b constant offset which uses only one postbyte
1806	$\Rightarrow \mathrm{ABA}$	two-byte ABA, INH addressing mode
0435 EE	\Rightarrow DBNE $\mathrm{X},(-18)$	three-byte loop instruction
3F	\Rightarrow SWI	Postbyte 35 indicates DBNE X, negative one-byte SWI, INH addressing mode

Table A-2. CPU12 Opcode Map (Sheet 1 of 2)

BGND^{+5}	${ }^{10} \text { ANDCC }^{1}$	20	PULX	${ }^{40}{ }^{\text {NEGA }}$	${ }^{50}{ }^{\text {NEGB }}$	NEG^{3-6}	${ }^{70}{ }_{\text {NEG }}{ }^{4}$	${ }^{80}{ }^{1}$	${ }^{90} \text { SUBA }{ }^{3}$		${ }^{0}{ }^{\prime}{ }^{3-6}$	$\begin{aligned} & \text { BO } \\ & \text { SUBA } \end{aligned}$	$\begin{gathered} \text { CO } \\ \text { SUBB } \end{gathered}$	SUBB^{3}	$E^{E 0}{ }^{3-8}$	$\mathrm{FO}_{\text {SUBB }}{ }^{3}$
IH	IM	RL	IH	1 H	IH	ID 2.4	EX 3	IM 2	DI 2		D 2-4	EX 3	IM 2	DI 2	ID $2-4$	EX
${ }^{01} \text { MEM }^{5}$	${ }^{11} \text { EDIV }{ }^{11}$	${ }^{21} \mathrm{BRN}^{1}$	${ }^{31}{ }_{\text {PULY }}{ }^{3}$	COMA^{1}	COMB^{1}	COM^{3-6}	${ }^{71} \text { COM }^{4}$	${ }^{81} \mathrm{CMPA}^{1}$	${ }^{91} \mathrm{CMPA}^{3}$		$\mathrm{CM}^{31}{ }^{3-6}$	${ }^{B 1} \mathrm{CMPA}^{3}$	$\mathrm{Cl}_{\mathrm{CMPB}}{ }^{1}$	CMPB^{3}	$\begin{array}{cc} \mathrm{E}_{1} & 3-6 \\ \mathrm{CMPB} \end{array}$	CMPB^{3}
$1 \mathrm{H}^{\prime}$	IH	RL	IH	IH	H	ID	EX 3	M	DI 2		D $\quad 2-4$	EX 3	IM	DI 2	ID $2-4$	EX
${ }^{02} \text { INY }$	${ }^{12} \mathrm{MUL}^{\ddagger}$	${ }^{22} \mathrm{BHI}^{3 / 1}$	${ }^{32} \text { PULA }{ }^{3}$	${ }^{42}{ }^{1 N C A}$	${ }^{52} \quad 1$	INC^{3-8}	$\begin{array}{\|l\|} \hline 72 \end{array}$	82	SBCA^{32}		SBCA^{3-6}	SBCA^{3}	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{SBCB} \end{aligned}$	SBCB^{3}	$\begin{array}{cc} \mathrm{E} 2 & 3-6 \\ \mathrm{SBCB} \end{array}$	$\begin{gathered} \mathrm{F} 2 \\ \mathrm{SBCB} \end{gathered}$
1 H	1 H	RL 2	IH	1 H	IH	ID $2-4$	EX	M	DI		D 2-4	EX 3	IM	DI 2	ID 2-4	EX
${ }^{03} \mathrm{DEY}$	${ }^{13} \text { EMUL }{ }^{3}$	${ }^{23} \text { BLS }^{3 / 1}$	${ }^{33} \text { PULB }^{3}$	DECA^{1}	${ }^{53} \mathrm{DECB}^{1}$	DEC^{33}	${ }^{73} \text { DEC }^{4}$	${ }^{83} \text { SUBD }^{2}$	${ }^{93} \text { SUBD }{ }^{3}$		$\begin{aligned} & \text { A3 }{ }^{3-6} \\ & \text { SUBD } \end{aligned}$	${ }^{\text {B3 }} \mathrm{SUBD}^{3}$	${ }_{\mathrm{ADDD}}$	ADCD^{3}	$\begin{array}{cc} \mathrm{E}_{3} & 3-6 \\ \mathrm{ADDD} \end{array}$	$\mathrm{FB}_{\mathrm{ADDD}}{ }^{3}$
	1 H	RL 2	IH	1 H	IH	ID $2-4$	EX 3	1 M	DI 2		D 2-4	EX 3	IM	DI 2	ID 2-4	EX
$04 \text { loop }^{*}$	${ }^{14}{ }^{\text {ORCC }}{ }^{1}$	${ }^{24} \mathrm{BCC}^{3 / 1}$	${ }^{34} \mathrm{PSHX}^{2}$	${ }^{44} \operatorname{LSRA}^{1}$	${ }^{54} \text { LSRB }^{1}$	LSR^{3-6}	${ }^{74} \text { LSR }^{4}$	${ }^{84}{ }^{\text {ANDA }}$	${ }^{94}{ }_{\text {ANDA }}{ }^{3}$		$\begin{aligned} & \text { A4 }{ }^{3-6} \\ & \text { ANDA } \end{aligned}$	${ }^{\mathrm{B} 4} \mathrm{ANDA}^{3}$	$\mathrm{C4}$	ANDBB^{3}	$\begin{array}{cc} \mathrm{E}_{4} & 3-8 \\ \text { ANDB } \end{array}$	ANDB
RL 3	1 M	RL	IH	IH	H	ID 2.4	EX 3	IM	DI 2		D 2-4	EX 3	IM	DI 2	ID 2-4	EX
${ }^{05} \mathrm{JMP}^{3-8}$	${ }^{15} \mathrm{JSR}^{4 \cdot 7}$	${ }^{25} \mathrm{BCS}^{3 / 1}$	${ }^{35} \mathrm{PSHY}^{2}$	${ }^{45} \text { ROLA }{ }^{1}$	${ }^{55} \text { ROLB }^{1}$	$\begin{gathered} 65 \mathrm{ROL}^{3-6} \end{gathered}$	$75 \quad 4$	$\begin{gathered} 85 \\ \text { BITA } \end{gathered}$	${ }^{95} \text { BITA }{ }^{3}$		BITA^{3-6}	$\begin{array}{\|l\|} \hline \text { B5 } \\ \text { BITA } \end{array}$	$\begin{gathered} \text { C5 } \\ \text { BITB } \end{gathered}$	$\text { BITB }^{3}$	$\begin{array}{cc} \text { E5 }^{3-6} \\ \text { BITB }^{3-1} \end{array}$	$\mathrm{FB}_{\text {BITB }}{ }^{3}$
ID $\quad 2-4$	ID $\quad 2-4$	RL 2	IH	1 H	IH	ID $2-4$	EX 3	1 M	DI		D $2-4$	EX 3	IM	DI 2	ID 2-4	EX 3
${ }^{06} \mathrm{JMP}^{3}$	${ }^{16}{ }^{\text {JSR }}{ }^{4}$	${ }^{28} \mathrm{BNE}^{3 / 1}$	${ }^{36} \mathrm{PSHA}^{2}$	${ }^{46} \mathrm{RORA}^{1}$	${ }^{56} \mathrm{RORB}^{1}$	${ }^{66} \mathrm{ROR}^{3-6}$	${ }^{76} \mathrm{ROR}^{4}$	${ }^{86}{ }^{\text {LDAA }}{ }^{1}$	${ }^{96} \text { LDAA }^{3}$		LDAA^{3-6}	${ }_{\text {LDAA }}{ }^{3}$	C6	LDAB^{3}	EDAB^{3-6}	${ }_{\text {LDAB }}{ }^{3}$
EX	EX	RL 2	IH	IH	IH	ID $\quad 2-4$	EX 3	IM 2	DI 2		D 2-4	EX 3	IM	DI 2	ID 2-4	EX
${ }^{07} \text { BSR }^{4}$	${ }^{17}{ }_{\text {JSR }}$	$\begin{gathered} 27 \\ \mathrm{BEQ}^{3 / 1} \end{gathered}$	${ }^{37} \mathrm{PSHB}^{2}$	${ }^{47}{ }_{\text {ASRA }}{ }^{1}$	${ }^{57} \text { ASRB }^{1}$	$\begin{gathered} 67 \\ A S R^{3-6} \end{gathered}$	${ }^{77} \text { ASR }{ }^{4}$	${ }^{87} \text { CLRA }$	${ }^{97} \text { TSTA }$		${ }^{\text {A7 }}{ }^{\text {NOP }}{ }^{1}$	$\begin{array}{\|l\|l\|} \hline \text { B7 } & 1 \\ \text { TFR/EXG } \end{array}$	$\stackrel{C 7}{C L R B}$	${ }^{\mathrm{D} 7} \mathrm{TSTB}^{1}$	$\mathrm{EF}^{\mathrm{TST}}{ }^{3-6}$	${ }_{\text {F7 }}^{\text {TST }}{ }^{3}$
RL	DI	RL 2	IH	1 H	IH	ID 2.4	EX 3	IH	IH		H	$1 \mathrm{H} \quad 2$	IH	H 1	ID 2-4	EX
${ }^{08}{ }_{\text {INX }}{ }^{1}$	${ }^{18} \text { Page 2 }{ }^{-1}$	${ }^{28} \mathrm{BVC}^{3 / 1}$	${ }^{38} \text { PULC }^{3}$	${ }^{48} \text { ASLA }{ }^{1}$	${ }^{58}{ }_{\text {ASLB }}{ }^{1}$	${ }^{68} \mathrm{ASL}^{3-8}$	${ }^{78} \text { ASL }$	88	${ }^{98} \text { EORA }^{3}$		$\begin{aligned} & \text { A8 }{ }^{3-6} \\ & \text { EORA } \end{aligned}$	${ }^{\text {B8 }} \text { EORA }{ }^{3}$	$\stackrel{C 8}{\mathrm{E}} \mathrm{EORB}$	EORB^{3}	$\begin{array}{cc} E_{8} & 3-8 \\ \text { EORB } \end{array}$	FORB^{3}
1 H	- -	RL 2	IH	$1 \mathrm{H} \quad 1$	IH	ID $2-4$	EX 3	M 2	DI 2		D 2-4	EX 3	1 M	DI 2	ID 2-4	EX
$0^{09}{ }^{1}$	$\begin{array}{\|l\|l\|} \hline 19 \\ \text { LEAY } \end{array}$	${ }^{29} \mathrm{BVS}^{3 / 1}$			${ }^{59}{ }_{\text {ASLD }}{ }^{1}$	$\begin{array}{cc} \\ \hline 69 & \ddagger 2-4 \\ \mathrm{CL}^{\prime} \end{array}$		${ }^{89}$	99 ADCA ${ }^{3}$		ADCA^{3-6}	B9 ADCA ${ }^{3}$	C9 ADCB	D9 ADCB ${ }^{3}$	$\begin{array}{cc} E 9 & 3-6 \\ A D C B \end{array}$	$\mathrm{F9}_{\text {ADCB }}{ }^{3}$
IH	ID $2-4$	RL 2	IH	1 H	IH	$10 \quad 2-4$	EX	IM	Di 2		D 2-4	EX 3	IM	DI	ID $2-4$	EX
$\mathrm{OA}_{\mathrm{RTC}}{ }^{\ddagger 7}$	${ }^{1 A} \text { LEAX }^{2}$	${ }^{2 A \mathrm{BPL}^{3 / 1}}$	${ }^{3 A} \text { PULD }^{3}$	$\mathrm{CALL}^{\ddagger 7}$	${ }^{5 \text { A }} \text { STAA }^{2}$	$\begin{gathered} \text { 6A } \\ \text { STAA } \\ \hline 2-4 \end{gathered}$	${ }^{7 A} \text { STAA }^{3}$	$\begin{array}{\|c\|} \hline 8 \mathrm{~A} \\ \hline \end{array}$	$\text { OA ORAA }{ }^{3}$		$\mathrm{AA}^{\mathrm{OARAA}}$	${ }^{\text {BA }}{ }^{2 R A A}{ }^{3}$	${ }^{\text {CA }} \text { ORAB }^{1}$	ORAB^{3}	$\begin{array}{c\|} \hline \text { EA }{ }^{3-6} \\ \text { ORAB } \end{array}$	$\mathrm{FA}_{\mathrm{ORAB}}{ }^{3}$
IH	ID $\quad 2-4$	RL 2	IH	EX 4	DI	ID $\quad 2-4$	EX 3	1 M	DI 2		D 2-4	EX 3	IM	D 2	ID 2-4	EX
${ }^{0 B} \mathrm{RTI}^{\dagger 8}$	${ }^{1 B} \text { LEAS }^{2}$	$2 \mathrm{~B} \quad 3 / 1$	${ }^{3 \mathrm{BS}} \mathrm{PSD}^{2}$	$\begin{gathered} \hline \text { 4B } \pm 7-10 \\ \text { CALL } \end{gathered}$	STAB^{2}	$\begin{gathered} \hline \text { 6B } \quad \ddagger 2-4 \\ \text { STAB } \end{gathered}$		${ }^{8 \mathrm{ADDA}}{ }^{1}$	${ }_{\mathrm{ADDA}}{ }^{3}$		$\mathrm{AB}^{3-6}{ }^{3-6}$	$\mathrm{BB}_{\mathrm{ADDA}}{ }^{3}$	CB	ADDB^{3}	$\begin{array}{cc} \mathrm{EB}^{3-6} \\ \mathrm{ADDB} \end{array}$	$\underset{\mathrm{ADDB}}{ }{ }^{3}$
IH	ID $2-4$	RL	IH	ID 2-5	DI	ID $\quad 2-4$	EX	M	DI		D $2-4$	EX 3	IM	DI 2	ID 2-4	EX
$\begin{array}{\|l\|} \hline 0 \mathrm{OCET} \\ \hline{ }^{\text {BSET }} \\ \hline \end{array}$	${ }^{1 \mathrm{C}} \mathrm{BSET}^{4}$	${ }^{2 C_{B G E}}{ }^{3 / 1}$	$\begin{array}{\|cc\|} \hline 3 C_{\text {wavr }} & \ddagger+5 \\ \hline \end{array}$	${ }^{4 \mathrm{CSET}}{ }^{4}$	${ }^{5 \mathrm{C}_{\mathrm{STD}}}$	$\mathrm{CBTD}_{\mathrm{ST}}^{\ddagger 2-4}$	${ }^{7 \mathrm{C}_{\text {STD }}}{ }^{3}$	${ }^{8 C} \mathrm{CPD}^{2}$	${ }^{9 C} \mathrm{CPD}^{3}$		ACPD^{3-6}	${ }^{\mathrm{BC}} \mathrm{CPD}$	$\overline{\mathrm{CC}}$	LDD^{3}	ECD^{3-6}	$\stackrel{C}{\mathrm{~F}} \mathrm{LDD}$
ID $3-5$	EX	RL 2	SP	DI 3	DI 2	ID 2.4	EX 3	1 M	DI 2		D $2-4$	EX 3	IM	DI 2	ID $2-4$	EX
$\begin{array}{\|cc\|} \hline 0 D & 4-6 \\ \text { BCLR } \end{array}$	${ }^{1 D} \text { BCLR }^{4}$	${ }_{\mathrm{BLT}}{ }^{3 / 1}$		${ }^{4 D}{ }_{B C L R}{ }^{4}$		$\begin{gathered} \text { 6D } \\ \mathrm{STY}^{\ddagger 2-4} \end{gathered}$					$P Y^{3-6}$	${ }^{\text {BD }} \mathrm{CPY}$	CD	$\overline{\mathrm{LD}}$	$\mathrm{ED}_{\mathrm{LDY}}{ }^{3-6}$	FD ${ }^{3}$
ID 3-5	EX	RL 2	IH	DI	DI	ID $\quad 2.4$	EX 3	1 M	DI		D 2-4	EX 3	1 M	DI 2	ID 2-4	EX
$\begin{array}{\|c\|} \hline 0 E \\ \text { BRSET } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \mathrm{E} \\ \mathrm{BRSET}^{5} \end{array}$	${ }^{2 E_{B G T}}{ }^{3 / 1}$	${ }^{3 E_{\text {WAI }}}{ }^{\ddagger \dagger 7}$	$\begin{array}{cc} 4 \mathrm{EESSET} \end{array}$	${ }^{5 E_{S T X}}{ }^{2}$	$\mathrm{SE}_{\mathrm{STX}}^{\ddagger 2-4}$	$7 \mathrm{E}_{\text {cTV }}{ }^{3}$	${ }^{8 E} \mathrm{CPX}^{2}$	${ }^{9 E} \mathrm{CPX}{ }^{3}$		CPE^{3-6}	$\mathrm{BE}_{\mathrm{CPX}}{ }^{3}$	CE	LDX^{3}	$E E X^{3-6}$	$\mathrm{FE}_{\mathrm{LDX}}{ }^{3}$
ID $\quad 4-6$	EX 5	RL 2	IH	DI 4	DI	ID 2.4	EX 3	M	DI 2		D $2-4$	EX 3	IM	DI 2	ID $2-4$	EX
$\begin{array}{\|cc\|} \hline 0 \mathrm{FF} & \ddagger 4-6 \\ \text { BRCLR } \end{array}$	$\begin{array}{\|l\|} \hline 1 \mathrm{~F} \\ \text { BRCLR } \\ \hline \end{array}$	${ }^{2 F_{B L E}}{ }^{3 / 1}$	${ }^{3 F} \mathrm{SW}$	$\begin{aligned} & \hline 4 \mathrm{~F} \\ & \text { BRCLR }^{4} \end{aligned}$	${ }^{5 \mathrm{~F}} \text { STS }$	$\begin{gathered} 6 \mathrm{~F} \\ \mathrm{STS} \end{gathered}$		${ }^{8 F^{C P S}}{ }^{2}$	${ }^{9 F_{C P S}}{ }^{3}$		CPS^{3-6}	${ }^{\text {BF }} \mathrm{CPS}$	$\overline{\text { CFS }}$	LDS	LDS^{3-6}	LDS^{3}
ID $\quad 4-6$	EX	RL 2	IH	DI 4	DI	$10 \quad 2.4$	EX 3	M	DI 2		D 2-4	EX 3	IM 3	DI 2	$10 \quad 2-4$	EX

Key to Table A-2

Table A-2. CPU12 Opcode Map (Sheet 2 of 2)

MOWW^{4}	${ }^{10} \text { IDIV }^{12}$	${ }^{20} \text { LBRA }{ }^{4}$	${ }^{30} \text { TRAP }^{10}$	TRAP^{10}	${ }^{50} \text { TRAP }^{10}$	${ }^{60} \operatorname{TRAP}^{10}$	${ }^{70} \operatorname{TRAP}^{10}$	${ }^{80} \operatorname{TRAP}^{10}$	${ }^{90} \operatorname{TRAP}^{10}$	ADAP^{10}	BRAP^{10}	$\mathrm{CO}_{\mathrm{TRAP}}{ }^{10}$	${ }^{D 0} \text { TRAP }^{10}$	ERAP^{10}	$\begin{array}{c\|} \hline \text { FO }{ }^{10} \\ \hline \end{array}$
IM-ID	IH 2	RL 4	IH 2	IH 2	IH 2	H 2	IH 2	H 2	$1 \mathrm{H} \quad 2$	IH 2	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2	IH 2
$\begin{aligned} & 01 \\ & \text { MOVW }^{5} \end{aligned}$	${ }^{11} \text { FDIV }^{12}$	${ }^{21} \text { LBRN }^{3}$	${ }^{31} \text { TRAP }^{10}$	${ }^{41} \text { TRAP }^{10}$	${ }^{51} \operatorname{TRAP}^{10}$	${ }^{61} \operatorname{TRAP}^{10}$	${ }^{71} \text { TRAP }^{10}$	${ }^{81} \operatorname{TRAP}^{10}$	${ }^{91} \text { TRAP }^{10}$	$\mathrm{A1}_{\mathrm{TR} A P}{ }^{10}$	BRAP^{10}	${ }^{C 1} \text { TRAP }^{10}$	DRAP^{10}	$\mathrm{E}^{\mathrm{TRAP}}{ }^{10}$	$\begin{aligned} & \text { F1 } \text { TRAP }^{10} \end{aligned}$
EX-ID	$1 \mathrm{H} \quad 2$	RL 4	$1 \mathrm{H} \quad 2$	H 2	IH 2	IH 2	IH 2	H 2	IH	IH 2	IH	$1 \mathrm{H} \quad 2$	IH 2	IH	H 2
$\text { MOWw }^{5}$	$\begin{array}{l\|} \hline 12 \\ \text { EMACS } \\ \hline \end{array}$	$\mathrm{LBHI}^{4 / 3}$	TRAP^{32}	${ }^{42} \operatorname{TRAP}^{10}$	TRAP^{10}	TRAP^{10}	${ }^{72} \text { TRAP }^{10}$	${ }^{82} \operatorname{TRAP}^{10}$	TRAP^{10}	ARAP^{10}	TRAP^{10}	$\mathrm{CD}_{\mathrm{TRAP}}{ }^{10}$	TRAP^{10}	$\mathrm{E}_{2} \mathrm{TRAP}^{10}$	${ }^{F 2} \text { TRAP }^{10}$
ID-ID	SP 4	RL 4	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2	H 2	$1 \mathrm{H} \quad 2$	$\mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	H 2
$\text { MOWW }^{53}$	${ }^{13} \text { EMULS }{ }^{3}$	${ }^{23}{ }^{\text {LBLS }}$	${ }^{33} \text { TRAP }^{10}$	TRAP^{10}	TRAP^{10}	${ }^{63} \operatorname{TRAP}^{10}$	${ }^{73} \text { TRAP }^{10}$	${ }^{83} \text { TRAP }^{10}$	${ }^{93} \text { TRAP }^{10}$	TRAP^{10}	TRAP^{10}	TRAP^{10}	DRAP^{10}	TRAP^{10}	${ }^{F 3} \text { TRAP }^{10}$
IM-EX 6	IH	RL 4	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2	IH 2	IH 2	H 2	IH	IH 2	$1 \mathrm{H} \quad 2$	IH	IH 2	$1 \mathrm{H} \quad 2$	IH
MONW^{6}	$\begin{array}{\|c\|} \hline 14 \\ { }^{14} \text { EDIVS }^{12} \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 24 & 4 / 3 \\ \hline \text { LBCC } \end{array}$	$\text { TRAP }^{34}$	TRAP^{10}	TRAP^{10}	${ }^{64} \operatorname{TRAP}^{10}$	${ }^{74} \text { TRAP }^{10}$	${ }^{84} \operatorname{TRAP}^{10}$	${ }^{94} \text { TRAP }^{10}$	ARAP^{10}	TRAP^{10}	$\operatorname{CA}^{\operatorname{TRAP}}{ }^{10}$	TRAP^{10}	ERAP^{10}	$\mathrm{FA}_{\mathrm{TRAP}}{ }^{10}$
EX-EX 6	$1 \mathrm{H} \quad 2$	RL 4	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2									
$\text { MOWW }^{5}$	${ }^{15} \text { IDIVS }^{12}$	LBCS^{25}	TRAP^{10}	TRAP^{10}	${ }^{55} \text { TRAP }^{10}$	TRAP^{10}	${ }^{75} \text { TRAP }^{10}$	${ }^{85} \mathrm{TRAP}^{10}$	${ }^{95} \operatorname{TRAP}^{10}$	TRAP^{10}	TRAP^{10}	TRAP^{10}	TRAP^{10}	TRAP^{10}	$\begin{aligned} & \text { F5 }{ }^{10}{ }^{10} \\ & \hline \end{aligned}$
ID-EX 5	$1 \mathrm{H} \quad 2$	RL 4	$1 \mathrm{H} \quad 2$	IH 2	IH 2	H 2	IH 2	H 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	H 2			
${ }_{A B A}{ }^{2}$	${ }^{16} S B A^{2}$	$\begin{gathered} \text { LBNE } \end{gathered}$	${ }^{36} \text { TRAP }^{10}$	TRAP^{10}	$\text { TRAP }^{10}$	${ }^{68} \operatorname{TRAP}^{10}$	${ }^{78} \text { TRAP }^{10}$	${ }^{86} \text { TRAP }{ }^{10}$	${ }^{96} \text { TRAP }^{10}$	ARAP^{10}	TRAP^{10}	$\begin{aligned} & \text { C6 } \operatorname{TRAP}^{10} \end{aligned}$	$\mathrm{DR}^{\mathrm{TR} A P^{10}}$	ERAP^{10}	$\begin{aligned} & \text { F6 }{ }^{\text {TRAP }}{ }^{10} \\ & \hline \end{aligned}$
$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	RL 4	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2									
${ }^{07} \text { DAA }^{3}$	${ }^{17} \mathrm{CBA}^{2}$	$\begin{array}{\|c\|} \hline 27 \\ \hline \text { LBEQ } \end{array}$	${ }^{37} \text { TRAP }^{10}$	TRAP^{47}	${ }^{57} \operatorname{TRAP}^{10}$	${ }^{67} \text { TRAP }^{10}$	$\begin{gathered} 77 \\ \text { TRAP }^{10} \end{gathered}$	${ }^{87} \text { TRAP }^{10}$	${ }^{97} \operatorname{TRAP}^{10}$	$\mathrm{AR}_{\mathrm{TRAP}}{ }^{10}$	${ }^{\mathrm{B7}} \mathrm{TRAP}^{10}$	CRAP^{10}	TRAP^{10}	ERAP^{10}	$\begin{array}{\|l\|} \hline F 7 \\ \text { TRAP }^{10} \end{array}$
$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	RL 4	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	H 2									
${ }^{08} \text { MOVB }^{4}$	$\begin{array}{\|c\|} \hline 18 \\ \text { MAXA }^{4-7} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 28 \\ \hline L B V C^{4 / 3} \\ \hline \end{array}$	${ }^{38} \text { TRAP }^{10}$	${ }^{48} \operatorname{TRAP}^{10}$	TRAP^{10}	TRAP^{10}	${ }^{78} \operatorname{TRAP}^{10}$	${ }^{88} \operatorname{TRAP}^{10}$	${ }^{98} \operatorname{TRAP}^{10}$	ARAP^{10}	${ }^{B 8} \operatorname{TRAP}^{10}$	$\mathrm{CR}^{\mathrm{TR} A P^{10}}$	TRAP^{10}	ERAP^{10}	$\begin{aligned} & \text { F8 }{ }^{10}{ }^{10} \\ & \hline \end{aligned}$
IM-ID 4	ID 3-5	RL $\quad 4$	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2							
${ }_{\text {MOVB }}{ }^{5}$	MINA^{4-7}	$\begin{array}{\|c\|} \hline 29 \quad 4 / 3 \\ \hline \text { LBVS } \end{array}$	$\text { TRAP }^{10}$	TRAP^{10}	TRAP^{10}	${ }^{69} \operatorname{TRAP}^{10}$	${ }^{79} \text { TRAP }^{10}$	${ }^{89} \text { TRAP }{ }^{10}$	TRAP^{10}	ARAP^{10}	TRAP^{10}	CRAP^{10}	TRAP^{10}	$\operatorname{Eg}_{\text {TRAP }}{ }^{10}$	${ }^{F 9} \text { TRAP }^{10}$
EX-ID 5	ID $\quad 3-5$	RL 4	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	H 2						
MOVB^{5}	$\begin{aligned} & \text { 1A }{ }^{4-7} \\ & \text { EMAXD } \end{aligned}$	$\begin{array}{\|c\|} \hline 2 \mathrm{~A} \quad \mathrm{LBPL}^{4 / 3} \\ \hline \end{array}$	${ }_{R_{E V}{ }^{\dagger 3 n}}$	TRAP^{10}	$\begin{gathered} 5 A^{10} \\ \text { RRAP }^{10} \end{gathered}$	TRAP^{10}	${ }^{7 A} \text { TRAP }^{10}$	${ }^{8 A} \text { TRAP }^{10}$	${ }^{9 A} \text { TRAP }^{10}$	ARAP^{10}	$\begin{array}{\|c\|} \hline \text { BA } \operatorname{TRAP}^{10} \end{array}$	$\begin{aligned} & \text { CA } \operatorname{TRAP}^{10} \end{aligned}$	$\begin{gathered} \mathrm{DA} \\ \operatorname{TRAP} \end{gathered}$	TRAP^{10}	$\begin{gathered} \text { FA }{ }^{\text {TRAP }}{ }^{10} \\ \hline \end{gathered}$
ID-ID 4	ID 3-5	RL 4	SP 2	IH 2	IH 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H}^{2} \quad 2$	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2			
$\mathrm{OB}_{\mathrm{MOVB}}{ }^{4}$	$\begin{array}{ll} \hline 1 \mathrm{~B} & 4-7 \\ \mathrm{EMIND} \end{array}$	$\begin{array}{\|c\|} \hline 2 \mathrm{BBMI} \\ \hline \end{array}$	$\begin{gathered} 3 \mathrm{~B}+5 \mathrm{n} / 3 \mathrm{n} \\ \mathrm{REVW} \end{gathered}$	${ }^{4 \mathrm{~B}} \mathrm{TRAP}^{10}$	$\mathrm{TRAP}^{5 \mathrm{~B}}{ }^{10}$	${ }^{6 B} \operatorname{TRAP}^{10}$	$\begin{gathered} 7 \mathrm{BE} \mathrm{TRAP}^{10} \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{~B} \quad 10 \\ \text { TRAP }^{10} \end{gathered}$	${ }^{9 B} \operatorname{TRAP}^{10}$	$\begin{aligned} & \text { AB }{ }^{10}{ }^{10} \end{aligned}$	BBAP^{10}	$\begin{aligned} & \text { CB }{ }^{10}{ }^{10} \end{aligned}$	$\begin{gathered} \mathrm{DB} \mathrm{TRAP}^{10} \end{gathered}$	EBAP^{10}	$\begin{array}{\|l\|} \hline F B \\ T_{R A P}^{10} \end{array}$
IM-EX 5	ID 3 3-5	RL 4	SP 2	IH 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2			
$\stackrel{O C}{M O V B}{ }^{6}$	$\begin{gathered} \text { 1C }{ }_{\text {MAXM }}{ }^{4-7} \end{gathered}$	$\begin{array}{\|cc\|} \hline 2 \mathrm{C} & 4 / 3 \\ \hline \text { LBGE } \end{array}$	$\mathrm{WAV}^{\mathbf{3 C}} \underset{\mathrm{WAV}^{ \pm 78}}{ }$	TRAP^{10}	TRAP^{10}	${ }^{6 C} \operatorname{TRAP}^{10}$	${ }^{7 \mathrm{TC}} \mathrm{TRAP}^{10}$	${ }^{8 C} \text { TRAP }^{10}$	${ }^{9 C} \text { TRAP }^{10}$	$\mathrm{AC}_{\mathrm{TRAP}}{ }^{10}$	BRAP^{10}	$\begin{aligned} & \text { CC }{ }^{10} \\ & \operatorname{TRAP}^{10} \end{aligned}$	TRAP^{10}	ERAP^{10}	$\begin{aligned} & \text { FC } \mathrm{TRAP}^{10} \end{aligned}$
EX-EX 6	ID 3-5	RL 4	SP 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{IH}^{2}$	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2			
$\begin{gathered} \text { ODOVB } \\ \text { M } \end{gathered}$	$\begin{gathered} 10 \text { D4-7 } \\ \text { MINM } \end{gathered}$	$\mathrm{LBLT}^{2 \mathrm{~L}}$	$\mathrm{TBL}^{\ddagger 6}$	TRAP^{10}	${ }^{50} \text { TRAP }^{10}$	${ }^{6 D} \operatorname{TRAP}^{10}$	$\begin{gathered} 70 \\ \text { TRAP }^{10} \end{gathered}$	${ }^{8 D} \text { TRAP }^{10}$	${ }^{9 D} \operatorname{TRAP}^{10}$	$\begin{aligned} & \text { AD }{ }^{\text {TRAP }}{ }^{10} 1 \end{aligned}$	TRAP^{10}	$\begin{gathered} \text { CD } \operatorname{TRAP}^{10} \end{gathered}$	$\frac{\mathrm{DD}}{\mathrm{TRAP}}{ }^{10}$	$\begin{aligned} & \operatorname{ED} \operatorname{TRAP}^{10} \end{aligned}$	$\begin{aligned} & \text { FD }{ }^{10}{ }^{10} \\ & \hline \end{aligned}$
ID-EX 5	ID $\quad 3-5$	RL $\quad 4$	D 3	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	H 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	H 2			
$E_{T A B}{ }^{2}$	$\begin{aligned} & 1 \mathrm{E} \quad 4-7 \\ & \mathrm{EMAXM} \end{aligned}$	$\mathrm{LEGT}^{4 / 3}$	$\text { STOP }{ }^{\ddagger 8}$	TRAP^{10}	TRAP^{10}	TRAP^{10}	TRAP^{10}	TRAP^{10}	$9 \mathrm{TRAP}^{10}$	$\mathrm{AE}_{\mathrm{TRAP}}{ }^{10}$	TRAP^{10}	$\begin{aligned} & \text { CE } \operatorname{TRAP}^{10} \end{aligned}$	$\text { DE } \mathrm{TRAP}^{10}$	EEAP^{10}	$\begin{gathered} \text { FE }{ }^{10} \\ \text { TRAP } \end{gathered}$
$1 \mathrm{H} \quad 2$	ID 3-5	RL 4	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	$1 \mathrm{H} \quad 2$	IH 2	$1 \mathrm{H} \quad 2$	IH 2				
${ }^{0 F_{T B A}}{ }^{2}$	$\begin{gathered} 1 \mathrm{~F} \\ \text { EMINM } \end{gathered}$	${ }^{2 F} \text { LBLE }^{4 / 3}$	${ }_{E_{\text {ETBL }}}{ }^{10}$	TRAP^{10}	TRAP^{10}	TRAP^{10}	TRAP^{10}	${ }^{8 F} \text { TRAP }^{10}$	TRAP^{10}	ARAP^{10}	TRAP^{10}	TRAP^{10}	TRAP^{10}	EFAP^{10}	$\begin{aligned} & \text { FF } \text { TRAP }^{10} \\ & \hline \end{aligned}$
$1 \mathrm{H} \quad 2$	ID 3-5	RL 4	ID 3	$1 \mathrm{H} \quad 2$	IH 2	IH	H 2								

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

$\int_{5 b}^{\infty} \begin{gathered} 0 . X \\ 50 \text { const } \end{gathered}$	$\left\lvert\, \begin{aligned} & 10 \\ & 5 b \text { const } \\ & \text {-16 } x \end{aligned}\right.$	$\begin{array}{\|c} 20 \\ \text { pre-inc } \\ 1 .+X \\ \hline \end{array}$	$\begin{array}{rr} 30 & 1, X_{+} \\ \text {post-inc } \end{array}$	$0, Y$ 5b const	$\begin{aligned} & 50 \\ & -16, Y \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{cc} 60 \\ & 1,+Y \\ \text { pre-inc } \end{array}$	$\begin{array}{\|r\|} \hline 70 \\ 1, Y_{+} \\ \text {post-inc } \end{array}$	$\begin{array}{cc} 80 \\ 0, S P \\ 5 b \text { const } \end{array}$	$\begin{aligned} & 90 \\ & -16, S P \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{\|l\|} A_{0} \\ \text { 1,+SP } \\ \text { pre-inc } \end{array}$	$\left\lvert\, \begin{gathered} 80 \\ \text { 1.SP+ } \\ \text { post-inc } \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 0, P C \\ 5 \mathrm{~b} \text { const } \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{DO} \\ & -16, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\begin{array}{\|ll} E 0 & \\ \hline & n, X \\ 9 b & \text { const } \end{array}$	$\begin{array}{\|cc} \text { FO } \\ \text { n,SP } \\ & \text { gb const } \end{array}$
$\begin{array}{\|cc} \hline 01 & 1, X \\ 5 b & \\ & \\ \hline \end{array}$	$\begin{aligned} & 11-15, X \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 2,+X \\ \text { pre-inc } \end{array}$	$\begin{array}{\|r\|} \hline 31 \\ 2, X_{+} \\ \text {post-inc } \\ \hline \end{array}$	1,Y 5b const	$\begin{aligned} & 51-15, Y \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{\|c\|} \hline 2,+Y \\ { }^{61} \\ \text { pre-inc } \end{array}$	${ }^{71}{ }_{2, Y+}{ }^{2, Y}$	1,SP 5b const	$\begin{array}{\|l} 91 \\ -15, S P \\ 5 b \text { const } \end{array}$	$\begin{aligned} & \text { A1 } \begin{array}{l} 2,+S P \\ \text { pre-inc } \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{Bi}_{2}{ }_{2, \mathrm{SP}+} \\ & \text { post-inc } \end{aligned}$	1,PC 5b const	$\begin{array}{\|l} \mathrm{D} 1 \\ -15, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{ll} E 1 & -n, X \\ 9 b \text { const } \end{array}$	$\begin{aligned} & \mathrm{F} 1 \\ & -\mathrm{n}, \mathrm{SP} \\ & 9 \mathrm{~b} \text { const } \end{aligned}$
$\begin{aligned} & 02 \\ & 2, \mathrm{X} \\ & 5 \mathrm{~b} \text { const } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12 \\ 5 b \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|l} 22 & 3 .+x \\ \text { pre-inc } \end{array}$	$\begin{array}{\|r\|} 32 \\ 3, \mathrm{X}+ \\ \text { post-inc } \end{array}$	2,Y 5b const	$\begin{array}{\|l} 52 \\ 5 b \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 62 \\ { }_{3,+Y} \\ \text { pre-inc } \end{array}$	$\begin{array}{\|r} 72 \\ 3, Y_{+} \\ \text {post-inc } \end{array}$	2,SP 5b const	$\begin{array}{\|l\|} \hline 92 \\ -14, S P \\ 5 b \text { const } \\ \hline \end{array}$	$\begin{aligned} & \text { A2 }{ }_{3,+S P} \\ & \text { pre-inc } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { 3,SP+ } \\ & \text { post-inc } \end{aligned}$	2,PC 5b const	$\begin{array}{\|l} \hline \mathrm{D} 2 \\ -14, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|l\|} \hline E 2 n \\ \\ 16 \mathrm{~b}, \mathrm{X} \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline F 2{ }_{n} \mathrm{SP} \\ 16 \mathrm{~b} \text { const } \end{array}$
$\begin{gathered} 03 \\ 3, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \\ \hline \end{gathered}$	$\begin{aligned} & 13 \\ & 5 b \text { const } \end{aligned}$	${ }^{23} 4,+X$	${ }^{33} 4, \mathrm{X}_{+}$	3,Y 5b const	$\begin{aligned} & 53 \\ & 5 b \text { const } \\ & 53, Y \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 63 & 4,+Y \\ \text { pre-inc } \end{array}$	${ }^{73}{ }_{4, Y_{+}} \text {post-inc }$	3,SP 5b const	$\begin{aligned} & 93 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { A3 }{ }_{4,+S P} \\ & \text { pre-inc } \end{aligned}$	$\begin{array}{\|l} \mathrm{B3}_{4, \mathrm{SP}+} \\ \text { post-inc } \end{array}$	3,PC 5b const	$\begin{aligned} & \mathrm{D3} 3 \\ & -13, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & E 3{ }_{[n, \mathrm{X}]} \\ & 16 \mathrm{~b} \text { indr } \end{aligned}$	$\begin{aligned} & \mathrm{F} 3 \\ & 10 \mathrm{n}, \mathrm{SP}] \\ & 18 \mathrm{indr} \end{aligned}$
${ }^{04} 4, \mathrm{x}$	14 $-12, \mathrm{X}$ $5 b$ const	$\begin{aligned} & 54 .+\mathrm{x} \\ & \text { pre-ine } \end{aligned}$	$\begin{array}{r} 34 \\ 5, \mathrm{X}+ \\ \text { post-inc } \end{array}$	4,Y 5b const	$\begin{array}{ll} 54 & \\ 5 b & -12, Y \\ 5 \mathrm{const} \end{array}$	$\left.\right\|_{5,+Y} ^{64}{ }^{64} \text { pre-inc }$	$\begin{array}{\|c} 74 \\ 5, Y_{+} \\ \text {post-inc } \end{array}$	4,SP 5b const	$\begin{aligned} & 94 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { A4 }{ }_{5,+S P} \\ & \text { pre-inc } \end{aligned}$	$\begin{aligned} & 84 \\ & 5, \mathrm{SP}+ \\ & \text { post-inc } \end{aligned}$	$\begin{aligned} & \text { C4 } \\ & \text { 4,PC } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \mathrm{D} 4 \\ & -12, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \mathrm{E4} \mathrm{~A}, \mathrm{X} \\ \text { A offset } \end{array}$	F4 A,SP A offset
5.X 5b const	$-11, X$ $5 b$ const	$\left.\right\|_{\text {8, +X }} ^{25}$	${ }^{35}{ }_{6, \mathrm{X}_{+}} \text {post-inc }$	5,Y 5b const	$\begin{aligned} & 55 \\ & -11, Y \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{\|c\|} 65 \\ \text { Bre-inc } \end{array}$	$\begin{array}{\|c} 75 \\ 6, Y+ \\ \text { post-inc } \end{array}$	5,SP 5b const	$\begin{aligned} & 95 \\ & -11, S P \\ & 5 b \text { const } \end{aligned}$	$\begin{aligned} & \text { A5 } \\ & \text { 6,+SP } \\ & \text { pre-inc } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { 6.SP+ } \\ & \text { post-inc } \end{aligned}$	5.PC 5b cons	$\begin{aligned} & \text { D5 } \\ & \text {-11,PC } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline E 5 \\ B, X \\ B \text { offset } \end{array}$	B,SP B offset
$\begin{array}{\|cc} 06, x \\ 5 b & 6 . X \\ 5 \text { const } \end{array}$	$\begin{aligned} & 16 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{ll} 28 \\ 7,+X \\ \text { pre-inc } \end{array}$	$\begin{array}{rr} 36 \\ 7, X_{+} \\ \text {post-inc } \end{array}$	6,Y 5b const	$\int_{56}^{56}-10, Y \text { const }$	$\begin{array}{\|rr} 66 \\ \hline & 7 .+Y \\ \text { pre-inc } \end{array}$	${ }^{76} 7, \mathrm{Y}_{+}+$		$\begin{aligned} & 96 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l} \hline \text { A6 } \\ 7,+ \text { SP } \\ \text { pre-inc } \end{array}$	$\begin{aligned} & 86 \\ & \text { 7.SP }+ \\ & \text { post-inc } \end{aligned}$	$\begin{aligned} & \hline \text { C6 } \\ & 5 \mathrm{~B}, \mathrm{PC} \\ & 5 \mathrm{const} \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & -10, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { E6 } \\ \text { D.X } \\ \text { D offset } \end{array}$	$\begin{array}{\|c\|} \hline \text { F6 } \\ \text { D.SP } \\ \text { D offset } \end{array}$
7.X $5 b$ const	$-8, \mathrm{X}$ 5 b const	$\begin{array}{\|l\|} \hline 27 \\ \text { pre-inc } \\ 8 .+X \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 37 \\ 8, \mathrm{X}_{+} \\ \text {post-inc } \end{array}$	7,Y 5b const	-9. Y 5b const	$\begin{array}{\|l\|} \hline 67 \\ 8,+Y \\ \text { pre-inc } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 77 \\ 8, Y_{+} \\ \text {post-inc } \end{array}$	7,SP 5b cons	$\begin{aligned} & 97 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { A7 } \\ & \text { 8,+SP } \\ & \text { pre-inc } \end{aligned}$	$\begin{aligned} & 87 \\ & \text { 8,SP+ } \\ & \text { post-inc } \end{aligned}$	7.PC 5b const	$\begin{aligned} & \mathrm{D7} \\ & 5 \mathrm{-9,PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	[D.X] D indirect	[D,SP] D indirect
$\begin{array}{\|cc\|} \hline 08 \\ 8, X \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{array}{\|cc} 18 \\ & -8, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\left.\right\|^{28} 88 .-\mathrm{x}$	$\begin{array}{\|c\|} \hline 38 \\ 8, X- \\ \text { post-dec } \\ \hline \end{array}$	8,Y 5b const	$\begin{array}{ll} 58 & \\ \hline \text {-8, } \mathrm{Y} \\ 5 \mathrm{const} \end{array}$	$\begin{array}{\|r\|} \hline 68 \\ 8,-Y \\ \text { pre-dec } \end{array}$	$\begin{array}{\|c\|} \hline 78 \\ 8, Y- \\ \text { post-dec } \\ \hline \end{array}$	8,SP 5b const	$\begin{aligned} & 98 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A8 } \\ \text { 8.-SP } \\ \text { pre-dec } \end{array}$	$\begin{aligned} & 88 \\ & 8, S P- \\ & \text { post-dec } \end{aligned}$	$\begin{aligned} & \mathrm{C} 8 \\ & 5 \mathrm{~b} \text { 8.PC } \\ & 5 \mathrm{c} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { D8 } \\ 5 \mathrm{Bb} \text { - } \mathrm{Ponst} \\ \hline \end{array}$	$\begin{array}{\|cc} \hline \text { E8 } & \\ & \text { n,Y } \\ \hline 9 b \text { const } \\ \hline \end{array}$	$\begin{aligned} & \hline \begin{array}{l} \text { n,PC } \\ \text { n const } \end{array} \\ & \hline \end{aligned}$
$\begin{array}{cc} \hline 09 & 9 . x \\ 5 b \text { const } \end{array}$	$\begin{array}{cc} 19 & -7, X \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|l\|} \hline 29 \\ 7,-\mathrm{X} \\ \text { pre-dec } \end{array}$	$\begin{array}{\|c\|} \hline 39 \\ 7 . X- \\ \text { post-dec } \end{array}$	9,Y 5b const	$\int_{50}^{50}-7, Y$	$\begin{array}{\|cc\|} \hline 69,-Y \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline 79 \\ 7, Y- \\ \text { post-dec } \end{array}$	9,SP 5b const	$\begin{aligned} & 98-7, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { A9 } \\ & 7,-\mathrm{SP} \\ & \text { pre-dec } \end{aligned}$	$\begin{aligned} & \text { B9 } \\ & \text { 7,SP- } \\ & \text { post-dec } \end{aligned}$	9,PC 5b const	$\begin{array}{\|l} \hline \text { D9 } \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \text { E9 } \\ & 9 \mathrm{n} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { F9 } \\ \text {-n, PC } \\ 9 \mathrm{~b} \text { const } \end{array}$
$\begin{aligned} & \hline \text { OA } 10, \mathrm{X} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 5 \mathrm{~b} \text { const } \mathrm{X} \\ & \hline \end{aligned}$	${ }^{2 A} 6,-x$	$\begin{array}{\|c\|} \hline 3 \mathrm{~A} \\ 6, \mathrm{X}- \\ \text { post-dec } \end{array}$	4A $10, Y$ 5b const	$\begin{aligned} & 5 \mathrm{~A} \\ & 5 \mathrm{~b} \text { const } \mathrm{Y} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} 6 A-Y \\ \text { pre-dec } \end{array}$	$\begin{aligned} & 7 \mathrm{AA} \\ & \begin{array}{c} 6, Y- \\ \text { post-dec } \end{array} \end{aligned}$	${ }^{8 \mathrm{~A}} 10 . \mathrm{SP}$ 5b const	$\begin{aligned} & 9 \mathrm{~A} \\ & 5 \mathrm{~b} \text { const } \\ & 5 \mathrm{SP} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { AA } \\ \text { 6.-SP } \\ \text { pre-dec } \end{array}$	$\begin{aligned} & \text { BA } \\ & \text { 6.SP- } \\ & \text { post-dec } \end{aligned}$	$\begin{aligned} & \text { CA } \\ & \text { 10,PC } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l} \hline \text { DA } \\ -6, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \text { EA } \quad \text { n, } Y \\ & 16 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline F A \\ \\ 10 \mathrm{n}, \mathrm{PC} \text { const } \\ \hline \end{array}$
$\begin{aligned} & 08 \\ & \text { 11,X } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|c\|} \hline 1 \mathrm{~B} \\ \text { 5b const } \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 28 \\ & { }_{5}^{28}-\mathrm{x} \\ & \text { pre-dec } \end{aligned}\right.$	${\underset{c}{5 . X-}}_{\text {post-dec }}^{3 \mathrm{~B}}$	$\begin{array}{ll} 48 \\ 11, Y \\ 5 b \\ 50 n s t \end{array}$	$\begin{array}{\|l\|} \hline 5 \mathrm{~B} \\ \text { 5b const } \\ \hline \end{array}$	$\begin{array}{\|c\|} 6 B-Y \\ \text { pre-dec } \end{array}$	$\left\lvert\, \begin{aligned} & 7 \mathrm{~B} \\ & \text { post- } \mathrm{Y}-\mathrm{dec} \end{aligned}\right.$	$\begin{aligned} & 8 \mathrm{~B} \\ & 11, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 9 \mathrm{~B} \\ & 5 \mathrm{E} \text { const } \\ & 5 \mathrm{~s} \text { con } \end{aligned}$	$\begin{array}{\|l} \hline \text { AB } \\ \text { 5,-SP } \\ \text { pre-dec } \end{array}$	$\begin{aligned} & \text { BB } \\ & \text { 5,SP- } \\ & \text { post-dec } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{CB} \\ \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \mathrm{DB} \\ & \quad-5, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	[n, Y] 16 b indr	$\begin{array}{\|l} \hline \text { FB } \\ {[\mathrm{n}, \mathrm{PC}]} \\ 16 \mathrm{~b} \text { indr } \end{array}$
12, X 5b const	$\begin{aligned} & 1 \mathrm{C} \\ & 5 \mathrm{~b} \text { const } \mathrm{X} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \mathrm{C} \\ \text { 4,-X } \\ \text { pre-dec } \end{array}$	$\left\lvert\, \begin{array}{\|c\|} \hline 3 C_{4, X-} \\ \text { post-dec } \end{array}\right.$	12. Y 5b const	$\begin{aligned} & 5 \mathrm{C} \\ & 5 \mathrm{~b} \text { const } \mathrm{Y} \end{aligned}$	$\begin{aligned} & 6 \mathrm{E},-\mathrm{Y} \\ & \text { pre-dec } \end{aligned}$	4, Y-post-dec	12,SP 5 b const	$\left[\begin{array}{r} -4, S P \\ 5 b \text { const } \end{array}\right.$	$\begin{array}{\|l} \hline \mathrm{AC} \\ 4,-\mathrm{SP} \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline \text { BC } \\ \text { 4,SP- } \\ \text { post-dec } \end{array}$	12,PC 5b const	$\begin{aligned} & D C \\ & 5 \mathrm{~b}, \mathrm{PC} \\ & 5 \mathrm{const} \end{aligned}$	A. Y A offset	A.PC A offset
$\begin{aligned} & 0013, x \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|c} \hline 1 \mathrm{D} \\ 5 \mathrm{c}-\mathrm{x} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\mathrm{m}_{3,-\mathrm{x}}^{\mathrm{pre-dec}}$	$\begin{array}{\|c} 3 D \\ 3, X- \\ \text { post-dec } \end{array}$	$\begin{aligned} & 4 \mathrm{D} \\ & 13, Y \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\left\{\begin{array}{l} 5 D-3, Y \\ 5 \mathrm{~b} \text { const } \end{array}\right.$	$\begin{array}{\|c\|} \hline 60-Y \\ \text { pre-dec } \end{array}$	$\begin{gathered} 7 \mathrm{D} \\ 3, Y- \\ \text { post-dec } \end{gathered}$	13.SP 5b const	$\begin{aligned} & 9 \mathrm{D} \\ & -3, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { AD } \\ & \text { 3,-SP } \\ & \text { pre-dec } \end{aligned}$	$\begin{array}{\|l} \hline \text { BD } \\ 3, S P- \\ \text { post-dec } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CD} \\ 13, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{DD} \\ -3, P C \\ 5 b \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ED } \\ \text { B.Y } \\ \text { B offset } \end{array}$	$\begin{array}{\|c\|} \hline \text { FD } \\ \text { B,PC } \\ \text { B offset } \end{array}$
$\begin{aligned} & 0 \mathrm{E} \\ & 14, X \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{gathered} 1 \mathrm{E} \\ 5 \mathrm{~b} \text { const } \mathrm{X} \end{gathered}$	${ }_{2 \mathrm{E},-\mathrm{X}}^{\mathrm{pre-dec}}$	$\left\lvert\, \begin{aligned} & 3 \mathrm{E}_{2, \mathrm{X}} \\ & \text { post-dec } \end{aligned}\right.$	$\begin{aligned} & 4 \mathrm{E} \\ & \text { 14,Y } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 5 \mathrm{E} \\ & -2, Y \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} 6 E_{2,-Y} \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline 7 \mathrm{E}_{2, \mathrm{Y}} \\ \text { post-dec } \end{array}$	$8_{14, S P}$ $5 \mathrm{~b} \text { const }$	$\begin{aligned} & 9 \mathrm{E} \\ & -2, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { AE } \\ 2,-S P \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline \text { BE } \\ 2, S P- \\ \text { post-dec } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{CE} \\ & 14, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{DE} \\ -2, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|c\|c} \text { EE } & \text { D,Y } \\ \text { D offset } \end{array}$	$\begin{array}{\|c\|} \text { FE } \\ \text { D.PC } \\ \text { Doffiset } \end{array}$
$\begin{aligned} & \text { OF } \\ & \text { 15,X } \\ & \text { 5b const } \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \mathrm{~F} \\ \text { } \\ \text { 5b const } \mathrm{X} \end{array}$	$\int_{\text {1.-X }}^{2 F}{ }^{2 F}$	$\begin{aligned} & \text { 3F } \\ & 1, X- \\ & \text { post-dec } \end{aligned}$	15, Y 5b const	$\begin{aligned} & 5 \mathrm{~F} \\ & 5 \mathrm{l} \text { const } \mathrm{Y} \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 6 F_{1,-Y} \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline 7 \mathrm{FF} \\ \text { 1,Y- } \\ \text { post-dec } \end{array}$	15.SP $5 b$ const	$\left\lvert\, \begin{aligned} & 9 \mathrm{~F} \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\begin{aligned} & \text { AF } \\ & \text { 1,-SP } \\ & \text { pre-dec } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BF } \\ \text { 1,SP- } \\ \text { post-dec } \\ \hline \end{array}$	15.PC 5b const	$\begin{array}{\|l\|} \hline \mathrm{DF} \\ -1, P \mathrm{P} \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	[D,Y] D indirect	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { FF } \\ \text { [D.PC] } \\ \mathrm{D} \text { indirect } \end{array}\right. \end{aligned}$

Key to Table A-3

Table A-5. Transfer and Exchange Postbyte Encoding

TRANSFERS									
LS	MS \Rightarrow	0	1	2	3	4	5	6	7
0		$\mathrm{A} \Rightarrow \mathrm{A}$	$\mathrm{B} \Rightarrow \mathrm{A}$	$\mathrm{CCR} \Rightarrow \mathrm{A}$	TMP3 ${ }_{L} \Rightarrow \mathrm{~A}$	$\mathrm{B} \Rightarrow \mathrm{A}$	$\mathrm{X}_{\mathrm{L}} \Rightarrow \mathrm{A}$	$Y_{L} \Rightarrow A$	$\mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{A}$
1		$\mathrm{A} \Rightarrow \mathrm{B}$	$\mathrm{B} \Rightarrow \mathrm{B}$	$\mathrm{CCR} \Rightarrow \mathrm{B}$	TMP3 ${ }_{L} \Rightarrow \mathrm{~B}$	$B \Rightarrow B$	$\mathrm{X}_{\mathrm{L}} \Rightarrow \mathrm{B}$	$Y_{L} \Rightarrow B$	$\mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{B}$
2		$\mathrm{A} \Rightarrow \mathrm{CCR}$	$\mathrm{B} \Rightarrow \mathrm{CCR}$	$\mathrm{CCR} \Rightarrow \mathrm{CCR}$	TMP3 ${ }_{\text {L }} \Rightarrow \mathrm{CCR}$	$\mathrm{B} \Rightarrow \mathrm{CCR}$	$\mathrm{X}_{\mathrm{L}} \Rightarrow \mathrm{CCR}$	$Y_{L} \Rightarrow C C R$	$\mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{CCR}$
3		sex:A \Rightarrow TMP2	sex: $B=$ TMP2	sex:CCR \Rightarrow TMP2	TMP3 \Rightarrow TMP2	$\mathrm{D} \Rightarrow$ TMP2	$\mathrm{x} \Rightarrow$ TMP2	$\mathrm{Y} \Rightarrow$ TMP2	$\mathrm{SP} \Rightarrow \mathrm{TMP2}$
4		$\begin{aligned} & \text { sex:A } \Rightarrow D \\ & \text { SEXA,D } \end{aligned}$	$\begin{aligned} & \operatorname{sex}: B \Rightarrow D \\ & \text { SEX } B, D \end{aligned}$	$\begin{aligned} & \text { sex:CCR } \Rightarrow D \\ & \text { SEX CCR,D } \end{aligned}$	TMP3 \Rightarrow D	$D \Rightarrow D$	$x \Rightarrow D$	$Y \Rightarrow D$	SP \Rightarrow D
5		$\begin{aligned} & \operatorname{sex}: A \Rightarrow X \\ & S E X A, X \end{aligned}$	$\begin{gathered} \hline \operatorname{sex}: B \Rightarrow X \\ \text { SEX } B, X \end{gathered}$	$\begin{aligned} & \hline \text { sex:CCR } \Rightarrow X \\ & \text { SEX CCR,X } \end{aligned}$	TMP3 \Rightarrow X	$D \Rightarrow x$	$x \Rightarrow x$	$Y \Rightarrow X$	SP \Rightarrow X
6		$\begin{aligned} & \text { sex:A } \Rightarrow Y \\ & \text { SEXA,Y } \end{aligned}$	$\begin{gathered} \operatorname{sex}: B \Rightarrow Y \\ \text { SEXB,Y } \end{gathered}$	$\begin{aligned} & \text { sex:CCR } \Rightarrow Y \\ & \text { SEXCCR, } Y \end{aligned}$	TMP3 \Rightarrow Y	$D \Rightarrow Y$	$X \Rightarrow Y$	$Y \Rightarrow Y$	SP $\Rightarrow \mathrm{Y}$
7		$\begin{aligned} & \operatorname{sex}: A \Rightarrow S P \\ & \operatorname{SEX} A, S P \end{aligned}$	$\begin{gathered} \operatorname{sex}: B \Rightarrow S P \\ S E X B, S P \end{gathered}$	$\begin{gathered} \text { sex:CCR } \Rightarrow \text { SP } \\ \text { SEX CCR,SP } \end{gathered}$	TMP3 $\Rightarrow \mathrm{SP}$	$D \Rightarrow S P$	$\mathrm{X} \Rightarrow \mathrm{SP}$	$Y \Rightarrow$ SP	$\mathrm{SP} \Rightarrow \mathrm{SP}$
EXCHANGES									
\Downarrow LS	MS \Rightarrow	8	9	A	B	C	D	E	F
0		$A \Leftrightarrow A$	$B \Leftrightarrow A$	$C C R \Leftrightarrow A$	$\begin{gathered} \mathrm{TMP} 3_{\mathrm{L}} \Rightarrow \mathrm{~A} \\ \$ 00: \mathrm{A} \stackrel{\mathrm{TMP3}}{ } \end{gathered}$	$\begin{aligned} & B \Rightarrow A \\ & A \Rightarrow B \end{aligned}$	$\begin{gathered} x_{L} \Rightarrow A \\ \$ 00: A \Rightarrow x \end{gathered}$	$\begin{gathered} Y_{L} \Rightarrow A \\ \$ 00: A \Rightarrow Y \end{gathered}$	$\begin{aligned} S P_{L} & \Rightarrow \mathrm{~A} \\ \$ 00: \mathrm{A} & \Rightarrow \mathrm{SP} \end{aligned}$
1		$A \Leftrightarrow B$	$B \Leftrightarrow B$	$C C R \Leftrightarrow B$	$\begin{gathered} \mathrm{TMP3}_{\mathrm{L}} \Rightarrow \mathrm{~B} \\ \mathrm{SFF}: \mathrm{B} \Rightarrow \mathrm{TMP3} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \Rightarrow \mathrm{~B} \\ \$ \mathrm{FF} \Rightarrow \mathrm{~A} \end{gathered}$	$\begin{gathered} x_{L} \Rightarrow B \\ \text { SFF:B } \Rightarrow x \end{gathered}$	$\begin{gathered} Y_{L} \neq B \\ \text { SFF:B } \Rightarrow Y \end{gathered}$	$\begin{aligned} S P_{\mathrm{L}} & \Rightarrow \mathrm{~B} \\ \mathrm{SFF}: \mathrm{B} & \Rightarrow \mathrm{SP} \end{aligned}$
2		$A \Leftrightarrow C C R$	$\mathrm{B} \Leftrightarrow \mathrm{CCR}$	$C C R \Leftrightarrow C C R$	$\begin{array}{\|c\|} \hline \mathrm{TMP}_{\mathrm{L}} \Rightarrow \mathrm{CCR} \\ \text { SFF:CCR } \Rightarrow \mathrm{TMP3} 3 \\ \hline \end{array}$		$\begin{array}{c\|} \mathrm{x}_{\mathrm{L}} \Rightarrow \mathrm{CCR} \\ \text { SFF:CCR } \Rightarrow \mathrm{x} \end{array}$	$\begin{array}{\|c\|} \hline Y_{L} \Rightarrow C C R \\ \text { SFF:CCR } \Rightarrow Y \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{SP} \mathrm{~L}_{\mathrm{L}} \Rightarrow \mathrm{CCR} \\ \text { SFF:CCR } \Rightarrow \mathrm{SP} \end{array}$
3		$\begin{gathered} \hline \mathrm{SOO}: \mathrm{A} \Rightarrow \mathrm{TMP2} \\ \mathrm{TMP2}{ }_{\mathrm{L}} \Rightarrow \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \$ 00: B \Rightarrow \mathrm{TMP2} \\ \mathrm{TMP} 2_{\mathrm{L}} \Rightarrow \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SOO:CCR} \Rightarrow \mathrm{TMP2} \\ \mathrm{TMP}_{2} \Rightarrow \mathrm{CCR} \\ \hline \end{gathered}$	TMP3 \Leftrightarrow TMP2	$D \Leftrightarrow T M P 2$	X \quad TMP2	Y Y TMP2	$\mathrm{SP} \Leftrightarrow \mathrm{TMP2}$
4		\$00:A $\Rightarrow \mathrm{D}$	\$00: $\mathrm{B} \Rightarrow \mathrm{D}$	$\begin{gathered} \$ 00: C C R \Rightarrow D \\ B \Rightarrow C C R \end{gathered}$	TMP3 \Leftrightarrow D	$D \Leftrightarrow D$	$\mathrm{X} \Leftrightarrow \mathrm{D}$	$Y \Leftrightarrow D$	$\mathrm{SP} \Leftrightarrow \mathrm{D}$
5		$\begin{gathered} \text { S00:A } \Rightarrow X \\ x_{L} \Rightarrow A \end{gathered}$	$\begin{gathered} s 00: B \Rightarrow X \\ X_{L} \Rightarrow B \end{gathered}$	$\begin{gathered} \$ 00: C C R \Rightarrow x \\ x_{L} \Rightarrow C C R \end{gathered}$	TMP3 ${ }^{\text {c }}$ ($D \Leftrightarrow X$	$X \Leftrightarrow X$	$Y \Leftrightarrow X$	SP $\Leftrightarrow \mathrm{X}$
6		$\begin{gathered} \$ 00: A \Rightarrow Y \\ Y_{L} \Rightarrow A \end{gathered}$	$\begin{gathered} S 00: B \Rightarrow Y \\ Y_{L} \Rightarrow B \end{gathered}$	$\begin{gathered} \$ 00: C C R \Rightarrow Y \\ Y_{L} \Rightarrow C C R \end{gathered}$	TMP3 $¢ \mathrm{Y}$	$D \Leftrightarrow Y$	$X \Leftrightarrow Y$	$Y \Leftrightarrow Y$	$\mathrm{SP} \Leftrightarrow \mathrm{Y}$
7		$\begin{gathered} \$ 00: A \Rightarrow S P \\ S P_{L} \Rightarrow A \end{gathered}$	$\begin{gathered} \$ 00: B \Rightarrow S P \\ S P_{\mathrm{L}} \Rightarrow \mathrm{~B} \end{gathered}$	$\begin{gathered} \mathrm{SOO:CCR} \Rightarrow \mathrm{SP} \\ \mathrm{SP} \Rightarrow \mathrm{C} \Rightarrow \mathrm{CCR} \end{gathered}$	$T M P 3 \Leftrightarrow$ SP	$D \Leftrightarrow S P$	$\mathrm{X} \Leftrightarrow \mathrm{SP}$	$Y \Leftrightarrow S P$	$\mathrm{SP} \Leftrightarrow \mathrm{SP}$

TMP2 and TMP3 registers are for factory use only.

Table A-6. Loop Primitive Postbyte Encoding (lb)

$\begin{array}{\|c\|} \hline \infty \\ \hline \text { DBEQ } \\ (+) \end{array}$	$\begin{array}{\|c} \hline \text { DBEQ } \\ \hline \\ \hline \end{array}$	${ }^{20} \mathrm{DENE}^{\mathrm{A}}$ (+)	${ }^{30}$ DBNE A (-)	${ }^{40}{ }^{\text {TBEQ }}{ }^{A}$ (+)	${ }^{50}$ TBEQ $^{\text {A }}$ -	${ }^{60}$ TBNE ${ }^{\text {A }}$ (+)	$\begin{array}{\|c\|c\|} \hline 70 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 30 \\ \hline \text { IBEQ } \\ (+) \end{array}$		${ }^{A D}{ }^{\text {IBNE }} \mathrm{A}$ $(+)$	${ }_{\text {IBNE }}{ }^{\text {A }}$ (H)
$\begin{array}{\|c\|} \hline 01 \\ \text { DBEQ } \\ (+) \end{array}$	$\begin{array}{\|c\|c\|} \hline 11 \\ \text { DBEQ } \\ (-) \end{array}$	${ }^{21}{ }^{21} \mathrm{DBNE}^{\mathrm{B}}$ $(+)$	$\begin{array}{\|c\|} \hline 31 \\ \hline \\ \hline \end{array}$	$$	$\begin{array}{\|c\|} \hline 51 \\ \hline \text { TBEQ } \\ (-) \\ \hline \end{array}$	${ }^{61} \mathrm{TBNE}^{\mathrm{B}}$ (t)	$\begin{array}{\|c\|} \hline 71 \\ \hline \\ \hline \end{array}$	$$	$\begin{array}{\|c\|c\|} \hline 21 \\ \hline \end{array}$	$\mathrm{A}_{\text {IBNE }} \mathrm{B}$ (+	$\begin{gathered} \text { Bi IBNE } \\ (H) \\ \hline \end{gathered}$
02	12	22	32	42	52	62					
03	13	23	33	43	53	63	${ }^{73}$	83	$\underbrace{3}$	A3	
04 DBEQ $(+)^{\text {D }}$	$\begin{array}{\|c\|} \hline 14 \\ \text { DBEQ }^{\text {D }} \\ (-) \end{array}$	$\underset{\substack{\text { DENE } \\(+)}}{24}$	$\begin{array}{\|c\|} \hline 34 \\ \mathrm{DBNE}^{34} \\ (-) \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 54 \\ \text { TBEQ } \\ (-) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 64 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 74 \\ \hline \text { TBNE } \\ (H) \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 94 \\ \hline 1 \mathrm{IBEQ} \\ (-) \\ \hline \end{array}$	$\begin{aligned} & \text { A4 }{ }^{\text {IBNE }} \\ & \hline \end{aligned}$ (+)	$\begin{gathered} \mathrm{BA}^{\mathrm{B4}} \mathrm{IBNE} \\ (-) \\ \hline \end{gathered}$
$\begin{gathered} \hline 05 \\ \hline \text { DBEQ } \\ (t) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \text { DBEQ }^{1} \quad \mathrm{X} \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \text { DENE }^{1} \\ (+) \end{gathered}$		$\begin{array}{\|c\|} \hline 45 \\ \hline \text { TBEQ } \\ (t) \\ \hline \end{array}$		${ }^{65} \text { TBNE }{ }^{X}$ (+	$\begin{gathered} \hline 75 \\ \hline \text { TBNE } \\ (H) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 85 \\ \hline 1 \mathrm{IBEQ} \\ (+) \end{array}$	$\begin{array}{\|c\|} \hline \infty \\ \hline 1 \mathrm{IBEQ} \\ (-) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { A5 IBNE } \\ (+) \\ \hline \end{array}$	
	$\begin{array}{\|c\|} \hline 16 \\ \text { DBEQ }^{16} \\ (H) \\ \hline \end{array}$		$\underset{\substack{\text { DBNE } \\(-)}}{{ }^{36}}$	$\begin{gathered} \hline 46 \text { TBEQ }^{(t)} \\ \hline \end{gathered}$	$\underset{\substack{\text { TBEQ } \\(-)}}{ }{ }^{\mathrm{SE}}$		$\begin{array}{\|c\|} \hline \text { T6 } \\ \text { TBNE } \\ (H) \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \mathrm{P}_{\text {IBEQ }} \mathrm{Y} \\ (H) \\ \hline \end{array}$	AE ${ }^{Y}$ (+)	
$\begin{array}{\|c} \hline 07 \\ \hline \text { DBEQ } \\ (+) \\ \hline \end{array}$	$\begin{gathered} \hline 17{ }^{17} \text { SP }^{\text {DBEQ }} \\ (-) \\ \hline \end{gathered}$	$\underset{\substack{27 \\ \text { DENE } \\(+)}}{ }$	$\underset{\substack{\text { DBNE } \\(-)}}{\text { SP }}$	$\begin{array}{\|c\|} \hline 47 \\ \hline \text { TBEQ } \\ (t) \\ \hline \end{array}$	$57{ }_{\substack{\text { TBEQ } \\ (-)}}{ }^{\text {SP }}$	$\begin{array}{\|c\|} \hline 67 \\ \hline \text { TBNE } \\ (+) \\ \hline \end{array}$	$\underset{\substack{77 \\ \text { TBNE } \\(H)}}{ }$	$\begin{gathered} \hline 87 \mathrm{SPEQ} \\ (+) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 97 \\ \hline 1 \mathrm{IBEQ} \\ (-) \\ \hline \end{array}$		$\begin{gathered} \mathrm{Br}^{\mathrm{B7}} \mathrm{SP} \\ \mathrm{IBNE} \\ (-) \\ \hline \end{gathered}$

Key to Table A-6

Table A-7. Branch/Complementary Branch

Branch				Complementary Branch			
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment
r \quad m	BGT	2 E	$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0$	r ¢ m	BLE	2 F	Signed
ram	BGE	2C	$\mathrm{N} \oplus \mathrm{V}=0$	$\mathrm{r}<\mathrm{m}$	BLT	2D	Signed
$\mathrm{r}=\mathrm{m}$	BEQ	27	$\mathrm{Z}=1$	r ¢ m	BNE	26	Signed
$r \leq m$	BLE	2 F	$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=1$	r>m	BGT	2E	Signed
$r<m$	BLT	2D	$\mathrm{N} \oplus \mathrm{V}=1$	r 2 m	BGE	2 C	Signed
r $\times \mathrm{m}$	BHI	22	$\mathrm{C}+\mathrm{Z}=0$	$\mathrm{r} \leq \mathrm{m}$	BLS	23	Unsigned
rem	BHS/BCC	24	$\mathrm{C}=0$	$\mathrm{r}<\mathrm{m}$	BLO/BCS	25	Unsigned
$\mathrm{r}=\mathrm{m}$	BEQ	27	$Z=1$	r ¢ m	BNE	26	Unsigned
r mm	BLS	23	$C+Z=1$	r>m	BHI	22	Unsigned
$\mathrm{r}<\mathrm{m}$	BLOVBCS	25	$\mathrm{C}=1$	r 2 m	BHS/BCC	24	Unsigned
Carry	BCS	25	$\mathrm{C}=1$	No Carry	BCC	24	Simple
Negative	BMI	2B	$\mathrm{N}=1$	Plus	BPL	2A	Simple
Overflow	BVS	29	$\mathrm{V}=1$	No Overflow	BVC	28	Simple
$\mathrm{r}=0$	BEQ	27	$Z=1$	$r \neq 0$	BNE	26	Simple
Always	BRA	20	-	Never	BRN	21	Unconditional

