
 EE 308 Spring 2011

• MC9S12 Assembler Directives
• A Summary of MC9S12 Instructions
• Disassembly of MC9S12 op codes

o Number of cycles and time taken to execute an MC9S12
program

o A label is a name assigned to the address of the location counter
where the label is defined

o Use of assembler directives
o A summary of MC9S12 instruction
o How to disassemble an MC9S12 instruction sequence

Summary of HCS12 addressing modes

ADDRESSING MODES

 EE 308 Spring 2011

A few instructions have two effective addresses:

• MOVB #$AA,$1C00 Move byte 0xAA (IMM) to address $1C00 (EXT)
• MOVW 0,X,0,Y Move word from address pointed to by X (IDX) to address

 pointed to by Y (IDX)

A few instructions have three effective addresses:

• BRSET FOO,#$03,LABEL Branch to LABEL (REL) if bits #$03 (IMM) of variable

 FOO (EXT) are set.

 EE 308 Spring 2011

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

• To initialize pointer use

ldx #table

not

ldx table

• For example, the following loads the address of table ($1000) into X; i.e., X will point
to table:

ldx #table ; Address of table ⇒ X

The following puts the first two bytes of table ($0C7A) into X. X will not point to table:

ldx table ; First two bytes of table ⇒ X

• To step through table, need to increment pointer after use

ldaa 0,x
inx

or

ldaa 1,x+

 EE 308 Spring 2011

Which branch instruction should you use?
Branch if A > B
Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0,

so 0xFF > 0x00

If signed, 0xFF = −1 and 0x00 = 0,

so 0xFF < 0x00

Using unsigned numbers: BHI (checks C bit of CCR)

Using signed numbers: BGT (checks V bit of CCR)

For unsigned numbers, use branch instructions which check C bit
For signed numbers, use branch instructions which check V bit

 EE 308 Spring 2011

Hand Assembling a Program
To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go
into memory.
(e.g., org $2000 will put the first instruction at address $2000.)

2. Look at the first instruction. Determine the addressing mode used.
(e.g., ldab #10 uses IMM mode.)

3. Look up the instruction in the MC9S12 S12CPUV2 Reference Manual, find the
appropriate Addressing Mode, and the Object Code for that addressing mode.
(e.g., ldab IMM has object code C6 ii.)

• Table A.1 of the S12CPUV2 Reference Manual has a concise summary of
the instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be
careful to convert decimal operands to hex operands if necessary.
(e.g., ldab #10 becomes C6 0A.)

5. Add the number of bytes of this instruction to the address of the instruction to
determine the address of the next instruction.
(e.g., $2000 + 2 = $2002 will be the starting address of the next instruction.)

 org $2000
 ldab #10
loop: clra
 dbne b,loop
 swi

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

MC9S12 Cycles

• MC9S12 works on 48 MHz clock

• A processor cycle takes 2 clock cycles – P clock is 24 MHz

• Each processor cycle takes 41.7 ns (1/24 µs) to execute

• An instruction takes from 1 to 12 processor cycles to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles
for that instruction in the Reference Manual.

– For example, LDAA using the IMM addressing mode shows one CPU cycle (of
type P).
– LDAA using the EXT addressing mode shows three CPU cycles (of type rPO).
– Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is
doing during each of the different types of CPU cycles.

2000 org $2000 ; Inst Mode Cycles
2000 C6 0A ldab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 04 31 FC dbne b,loop ; DBNE (REL) 3
2006 3F swi ; SWI 9

The program executes the ldab #10 instruction once (which takes one cycle). It then goes
through the loop 10 times (which has two instructions, one with one cycle and one with
three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

1 + 10 × (1 + 3) + 9 = 50

50 cycles = 50 × 41.7 ns/cycle = 2.08 µs

 EE 308 Spring 2011

 EE 308 Spring 2011

Assembler Directives

• In order to write an assembly language program it is necessary to use assembler
directives.

• These are not instructions which the HC12 executes but are directives to the assembler
program about such things as where to put code and data into memory.

• We will use only a few of these directives. (Note: In the following table, [] means an
optional argument.) Here are the ones we will need:

Directive Name Description Example

equ Give a value to a symbol len: equ 100
org Set starting value of location counter

where code or data will go
org $1000

dc.b Allocate and initialize storage for 8-bit
variables.
Place the bytes in successive memory
locations

var: dc.b 2,18
name: dc.b “Jane”

dc.w Allocate and initialize storage for 16-bit
variables.
Place the bytes in successive memory
locations

var: dc.w $ABCD

ds.b Allocate specified number of 8-bit
storage places

Table: ds.b 10

ds.w Allocate specified number of 16-bit
storage spaces

table: ds.w 50

dcb.b Fill memory with a given value
The first value is the number of bytes to
fill.
The second number is the value to put
into memory

init_data: dc.b 100,0

 EE 308 Spring 2011

Using labels in assembly programs

A label is defined by a name followed by a colon as the first thing on a line. When the
label is referred to in the program, it has the numerical value of the location counter when
the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

 org $2000
table1: dc.b $23,$17,$f2,$a3,$56
table2: ds.b 5
var: dc.w $43af

The CodeWarrior assembler produces a listing file (.lst). Here is the listing file from the
assembler:

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1 org $2000
2 2 a002000 2317 F2A3 table1: dc.b $23,$17,$f2,$a3,$56

 002004 56
3 3 a002005 table2: ds.b 5
4 4 a00200A 43AF var: dc.w $43af
5 5

Note that table1 is a name with the value of $2000, the value of the location counter
defined in the org directive. Five bytes of data are defined by the dc.b directive, so the
location counter is increased from $2000 to $2005.

Note that table2 is a name with the value of $2005. Five bytes of data are set aside for
table2 by the ds.b 5 directive. The as12 assembler initialized these five bytes of data to
all zeros. var is a name with the value of $200a, the first location after table2.

 EE 308 Spring 2011

HC12 Instructions

1. Data Transfer and Manipulation Instructions — instructions which move and
manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).

• Load and Store — load copy of memory contents into a register; store copy of register
contents into memory.

LDAA $2000 ; Copy contents of addr $2000 into A
STD 0,X ; Copy contents of D to addrs X and X+1

• Transfer — copy contents of one register to another.

TBA ; Copy B to A
TFR X,Y ; Copy X to Y

• Exhange — exchange contents of two registers.

XGDX ; Exchange contents of D and X
EXG A,B ; Exchange contents of A and B

• Move — copy contents of one memory location to another.

MOVB $2000,$20A0 ; Copy byte at $2000 to $20A0
MOVW 2,X+,2,Y+ ; Copy two bytes from address held

; in X to address held in Y
; Add 2 to X and Y

2. Arithmetic Instructions — addition, subtraction, multiplication, divison (S12CPUV2
Reference Manual, Sections 5.6, 5.8 and 5.12).

ABA ; Add B to A; results in A
SUBD $20A1 ; Subtract contents of $20A1 from D
INX ; Increment X by 1
MUL ; Multiply A by B; results in D

3. Logic and Bit Instructions — perform logical operations (S12CPUV2 Reference
Manual, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).

• Logic Instructions
ANDA $2000 ; Logical AND of A with contents of $2000
EORB 2,X ; Exclusive OR B with contents of address (X+2)

• Clear, Complement and Negate Instructions

NEG -2,X ; Negate (2’s comp) contents of address (X-2)
CLRA ; Clear Acc A

 EE 308 Spring 2011

• Bit manipulate and test instructions — work with one bit of a register or memory.

BITA #$08 ; Check to see if Bit 3 of A is set
BSET $0002,#$18 ; Set bits 3 and 4 of address $002

• Shift and rotate instructions

LSLA ; Logical shift left A
ASR $1000 ; Arithmetic shift right value at address $1000

4. Compare and test instructions — test contents of a register or memory (to see if zero,
negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.)
(S12CPUV2 Reference Manual, Section 5.9).

TSTA ; (A)-0 -- set flags accordingly
CPX #$8000 ; (X) - $8000 -- set flags accordingly

5. Jump and Branch Instructions — Change flow of program (e.g., goto, it-then-else,
switch-case) (S12CPUV2 Reference Manual, Sections 5.19, 5.20 and 5.21).

JMP L1 ; Start executing code at address label L1
BEQ L2 ; If Z bit set, go to label L2
DBNE X,L3 ; Decrement X; if X not 0 then goto L3
BRCLR $1A,#$80,L4 ; If bit 7 of addr $1A clear, go to label L4
JSR sub1 ; Jump to subroutine sub1
RTS ; Return from subroutine

6. Interrupt Instructions — Initiate or terminate an interrupt call (S12CPUV2 Reference
Manual, Section 5.22).
• Interrupt instructions

SWI ; Initiate software interrupt
RTI ; Return from interrupt

7. Index Manipulation Instructions — Put address into X, Y or SP, manipulate X, Y or
SP (S12CPUV2 Reference Manual, Section 5.23).

ABX ; Add (B) to (X)
LEAX 5,Y ; Put address (Y) + 5 into X

8. Condition Code Instructions — change bits in Condition Code Register (S12CPUV2
Reference Manual, Section 5.26).

ANDCC #$f0 ; Clear N, Z, C and V bits of CCR
SEV ; Set V bit of CCR

9. Stacking Instructions — push data onto and pull data off of stack (S12CPUV2
Reference Manual, Section 5.24).

PSHA ; Push contents of A onto stack
PULX ; Pull two top bytes of stack, put into X

 EE 308 Spring 2011

10. Stop and Wait Instructions — put MC9S12 into low power mode (S12CPUV2
Reference Manual, Section 5.27).

STOP ; Put into lowest power mode
WAI ; Put into low power mode until next interrupt

11. Null Instructions

NOP ; No operation
BRN ; Branch never

12. Instructions we won’t discuss or use — BCD arithmetic, fuzzy logic, minimum and
maximum, multiply-accumulate, table interpolation (S12CPUV2 Reference Manual,
Sections 5.7, 5.16, 5.17, and 5.18).

 EE 308 Spring 2011

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert HC12 op codes into mnemonics.

For example, consider the hex code:

ADDR DATA

1000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

• To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.

– If the first byte of the instruction is anything other than $18, use Sheet 1 of
Table A.2. From this table, determine the number of bytes of the instruction and
the addressing mode. For example, $C6 is a two-byte instruction, the mnemonic
is LDAB, and it uses the IMM addressing mode. Thus, the two bytes C6 05 is the
op code for the instruction LDAB #$05.

– If the first byte is $18, use Sheet 2 of Table A.2, and do the same thing. For
example, 18 06 is a two byte instruction, the mnemonic is ABA, and it uses the
INH addressing mode, so there is no operand. Thus, the two bytes 18 06 is the op
code for the instruction ABA.

– Indexed addressing mode is fairly complicated to disassemble. You need to use
Table A.3 to determine the operand. For example, the op code $E6 indicates
LDAB indexed, and may use two to four bytes (one to three bytes in addition to
the op code). The postbyte 01 indicates that the operand is 0,1, which is 5-bit
constant offset, which takes only one additional byte. All 5-bit constant offset,
pre and post increment and decrement, and register offset instructions use one
additional byte. All 9-bit constant offset instructions use two additional bytes,
with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction
bit, which is held in the first postbyte.) All 16-bit constant offset instructions use
three postbytes, with the 2nd and 3rd holding the 16-bit unsigned offset.

– Transfer (TFR) and exchange (EXG) instructions all have the op code $B7. Use
Table A.5 to determine whether it is TFR or an EXG, and to determine which
registers are being used. If the most significant bit of the postbyte is 0, the
instruction is a transfer instruction.

– Loop instructions (Decrement and Branch, Increment and Branch, and Test and
Branch) all have the op code $04. To determine which instruction the op code $04
implies, and whether the branch is positive (forward) or negative (backward), use
Table A.6. For example, in the sequence 04 35 EE, the 04 indicates a loop

 EE 308 Spring 2011

instruction. The 35 indicates it is a DBNE X instruction (decrement register X and
branch if result is not equal to zero), and the direction is backward (negative). The
EE indicates a branch of -18 bytes.

• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 ⇒⇒⇒⇒ LDAA #$05 two-byte LDAA, IMM addressing mode

CE 20 00 ⇒⇒⇒⇒ LDX #$2000 three-byte LDX, IMM addressing mode

E6 01 ⇒⇒⇒⇒ LDAB 1,X two to four-byte LDAB, IDX addressing
 mode. Operand 01 => 1,X, a 5b constant
offset which uses only one postbyte

18 06 ⇒⇒⇒⇒ ABA two-byte ABA, INH addressing mode

04 35 EE ⇒⇒⇒⇒ DBNE X,(-18) three-byte loop instruction
Postbyte 35 indicates DBNE X, negative

3F ⇒⇒⇒⇒ SWI one-byte SWI, INH addressing mode

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

