
 EE 308 Spring 2011

• Disassembly of MC9S12 op codes
• Decimal, Hexadecimal and Binary Numbers

o How to disassemble an MC9S12 instruction sequence
o Binary numbers are a code and represent what the programmer

intends for the code
o Convert binary and hex numbers to unsigned decimal
o Convert unsigned decimal to hex
o Signed number representation – 2’s complement form
o Using the 1’s complement table to find 2’s complements of hex

numbers
o Overflow and Carry
o Addition and subtraction of binary and hex numbers
o The condition code register (CCR): N, Z, V and C bits

HC12 Instructions

1. Data Transfer and Manipulation Instructions — instructions which move and
manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).

• Load and Store — load copy of memory contents into a register; store copy of register
contents into memory.

LDAA $2000 ; Copy contents of addr $2000 into A
STD 0,X ; Copy contents of D to addrs X and X+1

• Transfer — copy contents of one register to another.

TBA ; Copy B to A
TFR X,Y ; Copy X to Y

• Exhange — exchange contents of two registers.

XGDX ; Exchange contents of D and X
EXG A,B ; Exchange contents of A and B

• Move — copy contents of one memory location to another.

MOVB $2000,$20A0 ; Copy byte at $2000 to $20A0
MOVW 2,X+,2,Y+ ; Copy two bytes from address held

; in X to address held in Y
; Add 2 to X and Y

2. Arithmetic Instructions — addition, subtraction, multiplication, divison (S12CPUV2
Reference Manual, Sections 5.6, 5.8 and 5.12).

ABA ; Add B to A; results in A

 EE 308 Spring 2011

SUBD $20A1 ; Subtract contents of $20A1 from D
INX ; Increment X by 1
MUL ; Multiply A by B; results in D

3. Logic and Bit Instructions — perform logical operations (S12CPUV2 Reference
Manual, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).

• Logic Instructions
ANDA $2000 ; Logical AND of A with contents of $2000
EORB 2,X ; Exclusive OR B with contents of address (X+2)

• Clear, Complement and Negate Instructions

NEG -2,X ; Negate (2’s comp) contents of address (X-2)
CLRA ; Clear Acc A

• Bit manipulate and test instructions — work with one bit of a register or memory.

BITA #$08 ; Check to see if Bit 3 of A is set
BSET $0002,#$18 ; Set bits 3 and 4 of address $002

• Shift and rotate instructions

LSLA ; Logical shift left A
ASR $1000 ; Arithmetic shift right value at address $1000

4. Compare and test instructions — test contents of a register or memory (to see if zero,
negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.)
(S12CPUV2 Reference Manual, Section 5.9).

TSTA ; (A)-0 -- set flags accordingly
CPX #$8000 ; (X) - $8000 -- set flags accordingly

5. Jump and Branch Instructions — Change flow of program (e.g., goto, it-then-else,
switch-case) (S12CPUV2 Reference Manual, Sections 5.19, 5.20 and 5.21).

JMP L1 ; Start executing code at address label L1
BEQ L2 ; If Z bit set, go to label L2
DBNE X,L3 ; Decrement X; if X not 0 then goto L3
BRCLR $1A,#$80,L4 ; If bit 7 of addr $1A clear, go to label L4
JSR sub1 ; Jump to subroutine sub1
RTS ; Return from subroutine

6. Interrupt Instructions — Initiate or terminate an interrupt call (S12CPUV2 Reference
Manual, Section 5.22).
• Interrupt instructions

SWI ; Initiate software interrupt
RTI ; Return from interrupt

 EE 308 Spring 2011

7. Index Manipulation Instructions — Put address into X, Y or SP, manipulate X, Y or
SP (S12CPUV2 Reference Manual, Section 5.23).

ABX ; Add (B) to (X)
LEAX 5,Y ; Put address (Y) + 5 into X

8. Condition Code Instructions — change bits in Condition Code Register (S12CPUV2
Reference Manual, Section 5.26).

ANDCC #$f0 ; Clear N, Z, C and V bits of CCR
SEV ; Set V bit of CCR

9. Stacking Instructions — push data onto and pull data off of stack (S12CPUV2
Reference Manual, Section 5.24).

PSHA ; Push contents of A onto stack
PULX ; Pull two top bytes of stack, put into X

10. Stop and Wait Instructions — put MC9S12 into low power mode (S12CPUV2
Reference Manual, Section 5.27).

STOP ; Put into lowest power mode
WAI ; Put into low power mode until next interrupt

11. Null Instructions

NOP ; No operation
BRN ; Branch never

12. Instructions we won’t discuss or use — BCD arithmetic, fuzzy logic, minimum and
maximum, multiply-accumulate, table interpolation (S12CPUV2 Reference Manual,
Sections 5.7, 5.16, 5.17, and 5.18).

 EE 308 Spring 2011

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert HC12 op codes into mnemonics.

For example, consider the hex code:

ADDR DATA

1000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

• To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.

– If the first byte of the instruction is anything other than $18, use Sheet 1 of
Table A.2. From this table, determine the number of bytes of the instruction and
the addressing mode. For example, $C6 is a two-byte instruction, the mnemonic
is LDAB, and it uses the IMM addressing mode. Thus, the two bytes C6 05 is the
op code for the instruction LDAB #$05.

– If the first byte is $18, use Sheet 2 of Table A.2, and do the same thing. For
example, 18 06 is a two byte instruction, the mnemonic is ABA, and it uses the
INH addressing mode, so there is no operand. Thus, the two bytes 18 06 is the op
code for the instruction ABA.

– Indexed addressing mode is fairly complicated to disassemble. You need to use
Table A.3 to determine the operand. For example, the op code $E6 indicates
LDAB indexed, and may use two to four bytes (one to three bytes in addition to
the op code). The postbyte 01 indicates that the operand is 0,1, which is 5-bit
constant offset, which takes only one additional byte. All 5-bit constant offset,
pre and post increment and decrement, and register offset instructions use one
additional byte. All 9-bit constant offset instructions use two additional bytes,
with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction
bit, which is held in the first postbyte.) All 16-bit constant offset instructions use
three postbytes, with the 2nd and 3rd holding the 16-bit unsigned offset.

– Transfer (TFR) and exchange (EXG) instructions all have the op code $B7. Use
Table A.5 to determine whether it is TFR or an EXG, and to determine which
registers are being used. If the most significant bit of the postbyte is 0, the
instruction is a transfer instruction.

– Loop instructions (Decrement and Branch, Increment and Branch, and Test and
Branch) all have the op code $04. To determine which instruction the op code $04
implies, and whether the branch is positive (forward) or negative (backward), use
Table A.6. For example, in the sequence 04 35 EE, the 04 indicates a loop

 EE 308 Spring 2011

instruction. The 35 indicates it is a DBNE X instruction (decrement register X and
branch if result is not equal to zero), and the direction is backward (negative). The
EE indicates a branch of -18 bytes.

• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 ⇒⇒⇒⇒ LDAA #$05 two-byte LDAA, IMM addressing mode

CE 20 00 ⇒⇒⇒⇒ LDX #$2000 three-byte LDX, IMM addressing mode

E6 01 ⇒⇒⇒⇒ LDAB 1,X two to four-byte LDAB, IDX addressing
 mode. Operand 01 => 1,X, a 5b constant
offset which uses only one postbyte

18 06 ⇒⇒⇒⇒ ABA two-byte ABA, INH addressing mode

04 35 EE ⇒⇒⇒⇒ DBNE X,(-18) three-byte loop instruction
Postbyte 35 indicates DBNE X, negative

3F ⇒⇒⇒⇒ SWI one-byte SWI, INH addressing mode

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

Binary, Hex and Decimal Numbers (4-bit representation)

Binary

Hex

Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

What does a number represent?

Binary numbers are a code, and represent what the programmer intends for the code.
0x72 Some possible meanings:

’r’ (ASCII)
INC MEM (hh ll) (HC12 instruction)
2.26V (Input from A/D converter)
11410 (Unsigned number)
+11410 (Signed number)

Set temperature in room to 69 °F
Set cruise control speed to 120 mph

Binary to Unsigned Decimal:
Convert Binary to Unsigned Decimal
1111011 2

1 x 26 + 1 x 2 5 + 1 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
123 10

 EE 308 Spring 2011

Hex to Unsigned Decimal
Convert Hex to Unsigned Decimal
82D6 16
8 x 163 + 2 x 162 + 13 x 161 + 6 x 160

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1
33494 10

Unsigned Decimal to Hex
Convert Unsigned Decimal to Hex

Division Q R
Decimal Hex

721/16
45/16
2/16

45
2
0

1
13
2

1
D
2

721 10 = 2D1 16

 EE 308 Spring 2011

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 0−7), then the number
is positive.
Get decimal equivalent by converting number to decimal, and use the + sign.

Example for 8−bit number:

3A 16 −> + (3 x 161 + 10 x 160) 10
 + (3 x 16 + 10 x 1) 10
 + 58 10

If the most significant bit is 1 (most significant hex digit 8−F), then the number is
negative.
Get decimal equivalent by taking 2’s complement of number, converting to decimal,
and using − sign.

Example for 8−bit number:

A316 −> - (5D) 16

 - (5 x 161 + 13 x 160) 10
 - (5 x 16 + 13 x 1) 10
 - 93 10

 EE 308 Spring 2011

One’s complement table makes it simple to finding 2’s complements

To take two’s complement, add one to one’s complement.

Take two’s complement of D0C3:

2F3C + 1 = 2F3D

Addition and Subtraction of Binary and Hexadecimal Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

One’s complement

One’s complement

 EE 308 Spring 2011

How the C, V, N and Z bits of the CCR are changed

N bit is set if result of operation is negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)

Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0

 7A 2A AC AC
+52 +52 +8A +72
----- ----- ------ ------
 CC 7C 36 1E

C: 0 C: 0 C: 1 C: 1

V: 1 V: 0 V: 1 V: 0

N: 1 N: 0 N: 0 N: 1

Z: 0 Z: 0 Z: 0 Z: 0

 EE 308 Spring 2011

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is greater than the minuend

V bit set when N - P = P or P - N = N

N bit set when MSB is 1

Z bit set when result is 0

 7A 8A 5C 2C
 -5C -5C -8A -72
 ----- ----- ------ ------
 1E 2E D2 BA

C: 0 C: 0 C: 1 C: 1

V: 0 V: 1 V: 1 V: 0

N: 0 N: 0 N: 1 N: 1

Z: 0 Z: 0 Z: 0 Z: 0

