

• Disassembly of MC9S12 op codes

• Decimal, Hexadecimal and Binary Numbers

- How to disassemble an MC9S12 instruction sequence
- Binary numbers are a code and represent what the programmer intends for the code
- Convert binary and hex numbers to unsigned decimal
- Convert unsigned decimal to hex
- \circ Signed number representation 2's complement form
- Using the 1's complement table to find 2's complements of hex numbers
- Overflow and Carry
- Addition and subtraction of binary and hex numbers
- The condition code register (CCR): N, Z, V and C bits

HC12 Instructions

1. Data Transfer and Manipulation Instructions — instructions which move and manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).

• Load and Store — load copy of memory contents into a register; store copy of register contents into memory.

LDAA \$2000 ; Copy contents of addr \$2000 into A STD 0,X ; Copy contents of D to addrs X and X+1

• Transfer — copy contents of one register to another.

TBA	; Copy B to A
TFR X,Y	; Copy X to Y

• Exhange — exchange contents of two registers.

XGDX	; Exchange contents of D and X
EXG A,B	; Exchange contents of A and B

 Move — copy contents of one memory location to another. MOVB \$2000,\$20A0 ; Copy byte at \$2000 to \$20A0 MOVW 2,X+,2,Y+ ; Copy two bytes from address held ; in X to address held in Y ; Add 2 to X and Y

2. Arithmetic Instructions — addition, subtraction, multiplication, divison (S12CPUV2 Reference Manual, Sections 5.6, 5.8 and 5.12).

ABA ; Add B to A; results in A

SUBD \$20A1 ; Subtract contents of \$20A1 from DINX ; Increment X by 1MUL ; Multiply A by B; results in D

3. Logic and Bit Instructions — perform logical operations (**S12CPUV2 Reference Manual**, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).

 Logic Instructions 	
ANDA \$2000	; Logical AND of A with contents of \$2000
EORB 2,X	; Exclusive OR B with contents of address (X+2)

• Clear, Complement and Negate Instructions

NEG -2,X	; Negate (2's comp) contents of address (X-2)
CLRA	; Clear Acc A

• Bit manipulate and test instructions — work with one bit of a register or memory.

BITA #\$08	; Check to see if Bit 3 of A is set
BSET \$0002,#\$18	; Set bits 3 and 4 of address \$002

• Shift and rotate instructions

LSLA ; Logical shift left A ASR \$1000 ; Arithmetic shift right value at address \$1000

4. Compare and test instructions — test contents of a register or memory (to see if zero, negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.) (S12CPUV2 Reference Manual, Section 5.9).

TSTA ; (A)-0 -- set flags accordingly CPX #\$8000 ; (X) - \$8000 -- set flags accordingly

5. Jump and Branch Instructions — Change flow of program (e.g., goto, it-then-else, switch-case) (**S12CPUV2 Reference Manual**, Sections 5.19, 5.20 and 5.21).

JMP L1	; Start executing code at address label L1
BEQ L2	; If Z bit set, go to label L2
DBNE X,L3	; Decrement X ; if X not 0 then goto L3
BRCLR \$1A,#\$80,L4	; If bit 7 of addr \$1A clear, go to label L4
JSR sub1	; Jump to subroutine sub1
RTS	; Return from subroutine

6. Interrupt Instructions — Initiate or terminate an interrupt call (**S12CPUV2 Reference Manual**, Section 5.22).

• Interrupt instructions

SWI ; Initiate software interrupt

RTI ; Return from interrupt

7. Index Manipulation Instructions — Put address into X, Y or SP, manipulate X, Y or SP (**S12CPUV2 Reference Manual**, Section 5.23).

ABX ; Add (B) to (X) LEAX 5,Y ; Put address (Y) + 5 into X

8. Condition Code Instructions — change bits in Condition Code Register (S12CPUV2 Reference Manual, Section 5.26).

ANDCC #\$f0 ; Clear N, Z, C and V bits of CCR SEV ; Set V bit of CCR

9. Stacking Instructions — push data onto and pull data off of stack (S12CPUV2 Reference Manual, Section 5.24).

PSHA ; Push contents of A onto stack PULX ; Pull two top bytes of stack, put into X

10. Stop and Wait Instructions — put MC9S12 into low power mode (S12CPUV2 Reference Manual, Section 5.27).

STOP ; Put into lowest power mode

WAI ; Put into low power mode until next interrupt

11. Null Instructions

NOP ; No operation BRN ; Branch never

12. Instructions we won't discuss or use — BCD arithmetic, fuzzy logic, minimum and maximum, multiply-accumulate, table interpolation (**S12CPUV2 Reference Manual**, Sections 5.7, 5.16, 5.17, and 5.18).

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert *HC12 op codes* into *mnemonics*.

For example, consider the hex code:

ADDR DATA

1000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

• To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.

- If the first byte of the instruction is anything other than **\$18**, use Sheet 1 of Table A.2. From this table, determine the number of bytes of the instruction and the addressing mode. For example, **\$C6** is a two-byte instruction, the mnemonic is **LDAB**, and it uses the **IMM** addressing mode. Thus, the two bytes **C6 05** is the op code for the instruction **LDAB #\$05**.

– If the first byte is **\$18**, use Sheet 2 of Table A.2, and do the same thing. For example, **18 06** is a two byte instruction, the mnemonic is **ABA**, and it uses the **INH** addressing mode, so there is no operand. Thus, the two bytes **18 06** is the op code for the instruction **ABA**.

– Indexed addressing mode is fairly complicated to disassemble. You need to use Table A.3 to determine the operand. For example, the op code \$E6 indicates LDAB indexed, and may use two to four bytes (one to three bytes in addition to the op code). The postbyte 01 indicates that the operand is 0,1, which is 5-bit constant offset, which takes only one additional byte. All 5-bit constant offset, pre and post increment and decrement, and register offset instructions use one additional byte. All 9-bit constant offset instructions use two additional bytes, with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction bit, which is held in the first postbyte.) All 16-bit constant offset instructions use three postbytes, with the 2nd and 3rd holding the 16-bit unsigned offset.

- Transfer (**TFR**) and exchange (**EXG**) instructions all have the op code **\$B7**. Use Table A.5 to determine whether it is **TFR** or an **EXG**, and to determine which registers are being used. If the most significant bit of the postbyte is **0**, the instruction is a transfer instruction.

– Loop instructions (Decrement and Branch, Increment and Branch, and Test and Branch) all have the op code **\$04**. To determine which instruction the op code **\$04** implies, and whether the branch is <u>positive</u> (forward) or <u>negative</u> (backward), use Table A.6. For example, in the sequence **04 35 EE**, the 04 indicates a loop

instruction. The 35 indicates it is a **DBNE X** instruction (decrement register X and branch if result is not equal to zero), and the direction is backward (negative). The **EE** indicates a branch of -18 bytes.

• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 CE 20 00 E6 01	⇒ LDAA #\$05 ⇒ LDX #\$2000 ⇒ LDAB 1,X	two-byte LDAA, IMM addressing mode three-byte LDX, IMM addressing mode two to four-byte LDAB, IDX addressing
		mode. Operand $01 \Rightarrow 1, X$, a 5b constant offset which uses only one postbyte
18 06	$\Rightarrow ABA$	two-byte ABA, INH addressing mode
04 35 EE	\Rightarrow DBNE X,(-18)	three-byte loop instruction Postbyte 35 indicates DBNE X, negative
3F	\Rightarrow SWI	one-byte SWI, INH addressing mode

00 †5	10	1	20 3	30 3	40 1	50 1	60	3-6	70 4	80 1	90 3	AD 3-6	B0 3	C0 1	D0 3	E0 3-6	FO
BGND	AND	cc	BRA RL 2	PULX	NEGA	NEGB	I D	NEG 2-4	NEG EX 3	SUBA IM 2	SUBA DI 2	SUBA	SUBA EX 3	SUBB	SUBB	SUBB	SUBB EX
01 5	11	11	21 1	31 3	41 1		61	3-6	71 4	81 1	91 3	A1 3-6	B1 3	C1 1	D1 3	E1 3-6	F1
MEM IH 1	ED	1	BRN RL 2	PULY	COMA	COMB		COM 2-4	COM EX 3	CMPA IM 2	CMPA DI 2	CMPA ID 2-4	CMPA EX 3	CMPB	CMPB DI 2	CMPB	CMPB EX
02 1	12	. ‡1	22 3/1	32 3	42 1	52 1	62	3-6	72 4	82 1	92 3	A2 3-6	B2 3	C2 1	D2 3	E2 3-6	F2
INY IH 1	I MU	1	BHI RL 2	PULA	INCA	INCB	ID	INC 2-4	INC EX 3	SBCA	SBCA DI 2	SBCA	SBCA EX 3	SBCB	SBCB	SBCB	SBCB
03 1	13	3	23 3/1	33 3	43 1	53 1	63	3-6	73 4	83 2	93 3	A3 3-6	B3 3	C3 2	D3 3	E3 3-6	F3
DEY	EM		BLS RL 2	PULB	DECA	DECB		DEC 2-4	DEC EX 3	SUBD	SUBD DI 2	SUBD	SUBD EX 3	ADDD	ADDD	ADDD	ADDD EX
04 . 3	4	1	24 3/1	34 2			64					A4 3-6					
loop	OR(BCC	PSHX	LSRA	LSRB		LSR	LSR	ANDA	ANDA	ANDA	ANDA	ANDB	ANDB	ANDB	ANDB
RL 3	M	2	RL 2 25 3/1	IH 1			ID 65	2-4				ID 2-4 A5 3-6		IM 2 C5 1			
JMP	JS		BCS	35 2 PSHY	45 1 ROLA	55 1 ROLB		ROL	ROL 4	85 1 BITA	BITA	BITA	BITA	BITB	BITB	BITB	BITB
ID 2-4	ID	2-4	RL 2	IH 1		IH 1		2-4			DI 2				DI		X
06 3 JMP	16 JS	R ⁴	26 3/1 BNE	36 2 PSHA	46 1 RORA	56 1 RORB	66 F	3-6 ROR	76 4 ROR	86 1 LDAA	96 3 LDAA	A6 3-6 LDAA	B6 LDAA	C6 1 LDAB	D6 LDAB	E6 3-6 LDAB	6 LDAB
EX 3	ΕX	3	RL 2	IH 1			ID	2-4	EX 3					IM 2	DI	ID 2-4	X
07 4 BSR	17 JS	R ⁴	27 3/1 BEQ	37 2 PSHB	47 1 ASRA	57 1 ASRB	67	3-6 ASR	77 4 ASR	87 1 CLRA	97 1 TSTA	A7 1 NOP	B7 TFR/EXG	CLRB	D7 TSTB	TST	7 TST
RL 2		_	TL 2	IH 1	IH 1	IH 1	ID	2-4	EX 3	IH 1	IH 1	IH 1	IH 2	IH 1	IH 1	ID 2-4	EX
08 1	18	-	3 3/1		48 1		68			88 1		A8 3-6					
INX IH 1	Pag	e 2	BVC 2	PULC	ASLA	ASLB	ID	ASL 2-4	ASL EX 3	EORA	EORA DI 2	EORA	EORA EX 3	EORB	EORB	EORB	EORE
09 1	10	2			49 1		69			89 1		A9 3-6		C9 1			
DEX	LE	٩Y	BVS	PSHC	LSRD	ASLD		CLŔ	CLR	ADCA	ADCA	ADCA	ADCA	ADCB	ADCB	ADCB	ADCE
<u>IH 1</u>	ID	2-4	RL 2	IH 1			10	2-4	EX 3								
RTC #7	1A LE	4X ²	2A 3/1 BPL	3A 3 PULD	4A ‡7 CALL	5A 2 STAA		±2-4 STAA	7A 3 STAA	8A 1 ORAA	9A 3 ORAA	AA 3-6 ORAA	BA 3 ORAA	CA 1 ORAB	DA 3 ORAB	EA 3-6 ORAB	FA ORAB
IH 1	ID	2-4	RL 2					2-4									
0B †8 RTI	1B LE/	4S ²	2B 3/1 BMI	3B 2 PSHD	4B ‡7-10 CALL	5B 2 STAB	6B	±2-4 STAB	7B 3 STAB	8B 1 ADDA	9B 3 ADDA	AB 3-6 ADDA	BB 3 ADDA	CB 1 ADDB	DB 3 ADDB	EB 3-6 ADDB	FB ADDE
IH 1	ID	2-4	RL 2		ID 2-5		ID		EX 3								
OC 4-6 BSET	1C BS	ET 4	2C 3/1 BGE	3C ±+5 wavr	4C 4 BSET	5C 2 STD		= ±2-4 STD	7C 3 STD	8C 2 CPD	9C 3 CPD	AC 3-6 CPD	BC 3 CPD	CC 2 LDD	DC 3 LDD	EC 3-6 LDD	FC LDD
ID 3-5	ΕX	4	RL 2	SP 1	DI 3	DI 2	ID	2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX
0D 4-6	1D	4	2D 3/1		4D 4		6D			8D 2		AD 3-6					
BCLR ID 3-5	BCI EX	4	BLT RL 2	RTS	BCLR DI 3	STY DI 2	ID	STY 2-4	STY EX 3	CPY IM 3	CPY DI 2	CPY ID 2-4	CPY EX	LDY	LDY DI 2	ID 2-4	EX LDY
0E ±4-6	1E	5	2E 3/1	3E ‡†7				±2-4		8E 2		AE 3-6	BE	CE 2			
BRSÈT	BRS		BGT	34/A1	BRSET	STX		STX	STX	CPX	CPX	CPX	CPX	LDX	LDX	LDX	LDX
ID 4-6 0F ±4-6	EX 1F	5	RL 2	25 0			ID 6F			IM 3 8F 2		ID 2-4 AF 3-6		IM 3	DI 2	ID 2-4 EF 3-6	
BRCLR	BRC		BLE	์ swi	RCLR			STS 5	STS	°CPS 1	CPS	CPS	CPS	LDS	LDS	LDS	LDS
ID 4-6	EX	5	RI	L			ID				DI 2						

Table A-2. CPU12 Opcode Map (Sheet 1 of 2)

- Number of HCS12 cycles (‡ indicates HC12 different)

Opcode _____ Mnemonic _____ Address Mode ____ → 00 5 → BGND → IH I - Number of bytes

	Table A-2. CPU12 Opcode Map (Sheet 2 of 2)															
00	4	10 12	20 4	30 10	40 10	50 10	60 10	70 10	80 10	90 10	A0 10	B0 10	C0 10	D0 10	E0 10	F0 10
MO	W	IDIV	LBRA	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-ID	5	IH 2		IH 2	IH 2	IH 2	IH 2		IH 2							
01 MO	/W ⁵	11 12 FDIV	21 3 LBRN	31 10 TRAP	41 10 TRAP	51 10 TRAP	61 10 TRAP	71 10 TRAP	81 10 TRAP	91 10 TRAP	A1 10 TRAP	B1 10 TRAP	C1 10 TRAP	D1 10 TRAP	E1 10 TRAP	F1 10 TRAP
EX-ID	5	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2				IH 2					
02 MO	/W ⁵	12 13 EMACS	22 4/3 LBHI	32 10 TRAP	42 10 TRAP	52 10 TRAP	62 10 TRAP	72 10 TRAP	82 10 TRAP	92 10 TRAP	A2 10 TRAP	82 10 TRAP	C2 10 TRAP	D2 10 TRAP	E2 10 TRAP	F2 10 TRAP
ID-ID	4	SP 4	RL 4	IH 2	IH 2	IH 2	IH 2				IH 2					
03	5	13 3				53 10 TRAP	63 10 TBAD	73 10		93 10 TRAP			C3 10	D3 10	E3 10	F3 10
MO IM-EX		EMULS	LBLS RL 4	TRAP	TRAP	1.1.2. 200	TRAP	TRAP	TRAP	IRAP IH 2	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
04	6	14 12	24 4/3				64 10						C4 10	D4 10	E4 10	F4 10
MO EX-E	w	EDIVS	LBCC	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP IH 2	TRAP	TRAP
05	A 0	15 12				55 10						B5 10		D5 10	E5 10	E5 10
MC	w	IDIVS	LBCS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
0.6	2	1 2 3 2	RL 4 26 4/3	IH 2 36 10	IH 2 46 10	IH 2 56 10	IH 2 66 10	IH 2 76 10		IH 2 96 10		IH 2 B6 10	IH 2 C6 10	IH 2 D6 10	IH 2 E6 10	IH 2 F6 10
AB	ia ²	SBA	LBNE	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IH 07	2	1 2		IH 2	IH 2	IH 2						IH 2				
DA		CBA 2	27 4/3 LBEQ	37 10 TRAP	47 10 TRAP	57 10 TRAP	67 10 TRAP	77 10 TRAP	87 10 TRAP	97 10 TRAP	A7 10 TRAP	B7 10 TRAP	C7 10 TRAP	D7 10 TRAP	E7 10 TRAP	F7 10 TRAP
IH	2	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2			IH 2						
08 MO	VB ⁴	18 4-7 MAXA	28 4/3 LBVC	38 10 TRAP	48 10 TRAP	58 10 TRAP	68 10 TRAP	78 10 TRAP	88 10 TRAP	98 10 TRAP	A8 10 TRAP	B8 10 TRAP	C8 10 TRAP	D8 10 TRAP	E8 10 TRAP	F8 10 TRAP
IM-ID	4	ID 3-5		IH 2	IH 2	IH 2	IH 2				IH 2					
09 MO	VB ⁵	19 4-7 MINA	29 4/3 LBVS	39 10 TRAP	49 10 TRAP	59 10 TRAP	69 10 TRAP	79 10 TRAP	89 10 TRAP	99 10 TRAP	A9 10 TRAP	B9 10 TRAP	C9 10 TRAP	D9 10 TRAP	E9 10 TRAP	F9 10 TRAP
EX-ID	5		RL 4	IH 2	IH 2	IH 2	IH 2			IH 2		IH 2				
0A MO	VB ⁵	1A 4-7 EMAXD	2A 4/3 LBPL	3A †3n REV	4A 10 TRAP	5A 10 TRAP	6A 10 TRAP	7A 10 TRAP	8A 10 TRAP	9A 10 TRAP	AA 10 TRAP	BA 10 TRAP	CA 10 TRAP	DA 10 TRAP	EA 10 TRAP	FA 10 TRAP
ID-ID	4	ID 3-5	RL 4	SP 2	IH 2	IH 2	IH 2				IH 2					
0B MO	VB ⁴	1B 4-7 EMIND	2B 4/3 LBMI	3B †5n/3n REVW	4B 10 TRAP	58 10 TRAP	6B 10 TRAP	78 10 TRAP	8B 10 TRAP	9B 10 TRAP	AB 10 TRAP	BB 10 TRAP	CB 10 TRAP	DB 10 TRAP	EB 10 TRAP	FB 10 TRAP
IM-EX	(5	ID 3-5	RL 4	SP 2	IH 2	IH 2	IH 2				IH 2					
0C MO	VB ⁶	1C 4-7 MAXM	2C 4/3 LBGE	3C ±†7B WAV	4C 10 TRAP	5C 10 TRAP	6C 10 TRAP	7C 10 TRAP	8C 10 TRAP	9C 10 TRAP	AC 10 TRAP	BC 10 TRAP	CC 10 TRAP	DC 10 TRAP	EC 10 TRAP	FC 10 TRAP
EX-EX	X 6	ID 3-5	RL 4	SP 2	IH 2	IH 2					IH 2					
0D MO	VB ⁵	1D D4-7 MINM	2D 4/3 LBLT	3D ±6 TBL	4D 10 TRAP	5D 10 TRAP	6D 10 TRAP	7D 10 TRAP	8D 10 TRAP	9D 10 TRAP	AD 10 TRAP	BD 10 TRAP	CD 10 TRAP	DD 10 TRAP	ED 10 TRAP	FD 10 TRAP
ID-EX	5	ID 3-5	RL 4	ID 3	IH 2	IH 2	IH 2		IH 2		IH 2					
0E TA	в ²	1E 4-7 EMAXM	2E 4/3 LBGT	3E \$8 STOP	4E 10 TRAP	5E 10 TRAP	6E 10 TRAP	7E 10 TRAP	8E 10 TRAP	9E 10 TRAP	AE 10 TRAP	BE 10 TRAP	CE 10 TRAP	DE 10 TRAP	EE 10 TRAP	FE 10 TRAP
IH	2	ID 3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
OF TB	A 2	1F 4-7 EMINM	2F 4/3 LBLE	3F 10 ETBL	4F 10 TRAP	5F 10 TRAP	6F 10 TRAP	7F 10 TRAP	8F 10 TRAP	9F 10 TRAP	AF 10 TRAP	BF 10 TRAP	CF 10 TRAP	DF 10 TRAP	EF 10 TRAP	FF 10 TRAP
IH + The	2	ID 3-5	RL 4	ID 3	IH 2		IH 2									

* The opcode \$04 (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.

† Refer to instruction summary for more information.

‡ Refer to instruction summary for different HC12 cycle count.

Page 2: When the CPU encounters a page 2 opcode (\$18 on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

100	10	20	30	40	50	60	70	80	90	AO	80	CO	DO	EO	FO
0.X	-16.X	1,+X	1.X+	40 0.Y	-16.Y	1.+Y	1.Y+	0.SP	-16.SP	1,+SP	1.SP+	0.PC	-16.PC	n.X	n.SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1
1.X	-15.X	2.+X	2.X+	1.Y	-15.Y	2.+Y	2.Y+	1.SP	-15.SP	2,+SP	2.SP+	1.PC	-15.PC	-n.X	-n.SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2	F2
2.X	-14,X	3.+X	3,X+	2,Y	-14,Y	3.+Y	3,Y+	2.SP	-14.SP	3,+SP	3.SP+	2.PC	-14.PC	n,X	n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b const	16b const
03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
3,X	-13,X	4,+X	4,X+	3,Y	-13,Y	4.+Y	4,Y+	3,SP	-13,SP	4,+SP	4,SP+	3,PC	-13,PC	[n,X]	[n,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b indr	16b indr
04	14	24	34	44	54	64	74	84	94	A4	B4	C4	D4	E4	F4
4.X	-12,X	5,+X	5,X+	4,Y	-12,Y	5.+Y	5,Y+	4,SP	-12,SP	5,+SP	5,SP+	4.PC	-12,PC	A,X	A,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
05	15	25	35	45	55	65 0 V	75	85	95	A5	B5	C5	D5	E5	F5
5,X	11,X	6,+X	6,X+	5,Y	-11,Y	6,+Y	6,Y+	5,SP	-11,SP	6,+SP	6,SP+	5,PC	-11.PC	B,X	B,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	B offset	B offset
06	16	26	36	46	56	66	76	86	96	A6	B6	C6	D6	E6	F6
6,X 5b const	-10,X 5b const	7,+X pre-inc	7,X+ post-inc	6,Y 5b const	-10,Y 5b const	7,+Y pre-inc	7,Y+ post-inc	6,SP 5b const	-10,SP 5b const	7,+SP pre-inc	7,SP+ post-inc	6,PC 5b const	-10,PC 5b const	D,X D offset	D,SP D offset
07	17	27	37		50 const 57	67	post-inc	87	97		B7	C7	D7		F7
7.X	1/ _9.X	2/ 8.+X	3/ 8.X+	47 7.Y	-9.Y	8.+Y	8.Y+	7,SP	9/ _9.SP	A7 8.+SP	8.SP+	7.PC	-9.PC	E7 [D.X]	D.SP1
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
08	18	28	38	48	58	68	78	88	98	A8	B8	C8	D8	E8	F8
8.X	-8.X	20 8X	8.X-	*° 8.Y	-8.Y	8Y	6.Y-	8.SP	-8.SP	8SP	8.SP-	8.PC	-8.PC	n.Y	n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
09	19	29	39	49	59	69	79	89	99	A9	89	C9	D9	E9	F9
9,X	-7.X	7,-X	7.X-	9,Y	-7.Y	7Y	7.Y-	9,SP	-7,SP	7SP	7,SP-	9,PC	-7,PC	-n,Y	-n,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
0A	1A	2A	3A	4A	5A	6A.	7A	8A	9A	AA	BA	CA	DA	EA	FA
10,X	-6,X	6,-X	6,X-	10,Y	-6,Y	6,-Y	6,Y-	10,SP	-6,SP	6,-SP	6,SP-	10,PC	-6,PC	n,Y	n,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
0B	1B	2B	3B	4B	5B	6B	7B	8B	9B	AB	BB	CB	DB	EB	FB
11,X	-5,X	5,-X	5.X-	11,Y	-5,Y	5,-Y	5,Y-	11,SP	-5,SP	5SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b indr	16b indr
0C	1C _4.X	2C	3C	4C	5C _4.Y	6C	70	8C	9C -4.SP	AC 4SP	BC	CC 12.PC	DC -4.PC	EC	FC
12,X 5b const	-4,X 5b const	4,-X	4,X- post-dec	12,Y 5b const	-4,Y 5b const	4,-Y pre-dec	4,Y-	12,SP 5b const	-4,SP 5b const	4,-SP pre-dec	4,SP-	5b const	-4,PC 5b const	A,Y A offset	A,PC A offset
OD CONST	1D	pre-dec 2D	3D	5D const 4D	5D const	pre-dec 6D	post-dec 7D	SD const 8D	SD const	pre-dec AD	post-dec BD	OD CONST	DD const	A offset FD	A offset FD
13.X	1D -3.X	2D 3X	3D 3 X-	4D 13.Y	5D -3.Y	3Y	3.Y-	13.SP	9D -3.SP	AD 3SP	3.SP-	13.PC	-3.PC	BY	B.PC
5b const	5b const	o,-A	post-dec	5b const	5b const	o,-1	oost-dec	5b const	5b const	ore-dec	post-dec	5b const	5b const	B offset	B offset
OE	1E	2E	3E	4E	5E SE	6E	7E	8E	9E	AE	BE	CE	DE	EE	FE
14.X	-2.X	2X	2.X-	14.Y	-2.Y	2Y	2.Y-	14.SP	_2.SP	2SP	2.SP-	14.PC	-2.PC	D.Y	D.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D offset	Doffset
							7E	8F	9F	AF	BF	CF	DE	EF	FF
0F	1F	2F	3F	4F	5F	6F									
	1F -1.X			4F 15.Y	5F -1.Y	6F 1Y	1.Y-	15.SP		1SP	1.SP-	15.PC	-1.PC		
0F 15,X 5b const		2F 1,-X pre-dec	3F 1,X- post-dec				1		-1,SP 5b const					[D,Y] D indirect	[D,PC] D indirect

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

Key to Table A-3 postbyte (hex)

B0 #,REG source code syntax type

type offset used //

			TRAN	SFERS				
ULS MS⇒	0	1	2	3	4	5	6	7
0	$A \rightrightarrows A$	$B \Rightarrow A$	$CCR \Rightarrow A$	TMP3 _L ⇒ A	B⇒A	$X_L \Rightarrow A$	$Y_L \Rightarrow A$	$SP_L \Rightarrow A$
1	$A \Rightarrow B$	B⇒B	$CCR \Rightarrow B$	TMP3 _L ⇒ B	B⇒B	$X_L \Rightarrow B$	$Y_L \Rightarrow B$	$SP_L \Rightarrow B$
2	$A \Rightarrow CCR$	$B \Rightarrow CCR$	$CCR \Rightarrow CCR$	TMP3 _L ⇒ CCR	$B \Rightarrow CCR$	$X_L \Rightarrow CCR$	$Y_L \Rightarrow CCR$	$SP_L \Rightarrow CCR$
3	sex:A ⇒ TMP2	sex:B ⇒ TMP2	sex:CCR ⇒ TMP2	TMP3 ⇒ TMP2	D ⇒ TMP2	X⇒TMP2	Y ⇒ TMP2	$SP \Rightarrow TMP2$
4	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	sex:CCR ⇒ D SEX CCR,D	TMP3 ⇒ D	D⇒D	X⇒D	Y⇒D	SP ⇒ D
5	sex:A ⇒ X SEX A,X	sex:B⇒X SEX B,X	sex:CCR ⇒ X SEX CCR,X	TMP3 ⇒ X	D⇒X	$\times \Rightarrow \times$	$Y \mathrel{\Rightarrow} X$	SP⇒X
6	sex:A ⇒ Y SEX A,Y	sex:B ⇒ Y SEX B,Y	sex:CCR ⇒ Y SEX CCR,Y	TMP3 ⇒ Y	$D \Rightarrow Y$	$X \Rightarrow Y$	$Y \Rightarrow Y$	SP⇒Y
7	sex:A ⇒ SP SEX A,SP	sex:B ⇒ SP SEX B,SP	sex:CCR ⇒ SP SEX CCR,SP	TMP3 ⇒ SP	D ⇒ SP	$X \Rightarrow SP$	$\Upsilon \Rightarrow SP$	$SP \Rightarrow SP$
			EXCH	ANGES				
ULS MS⇒	8	9	А	В	С	D	E	F
0	$A \Leftrightarrow A$	$B \Leftrightarrow A$	$CCR \Leftrightarrow A$	TMP3 _L ⇒ A \$00:A ⇒ TMP3	$B \Rightarrow A$ $A \Rightarrow B$	$X_L \Rightarrow A$ \$00:A $\Rightarrow X$	$Y_L \Rightarrow A$ \$00:A $\Rightarrow Y$	SP _L ⇒ A \$00:A ⇒ SP
1	$A \Leftrightarrow B$	$B \Leftrightarrow B$	$CCR \Leftrightarrow B$	TMP3 _L ⇒ B \$FF:B ⇒ TMP3	B⇒B \$FF⇒A	$X_L \Rightarrow B$ \$FF:B $\Rightarrow X$	$Y_L \Rightarrow B$ \$FF:B $\Rightarrow Y$	SP _L ⇒ B \$FF:B ⇒ SP
2	$A \Leftrightarrow CCR$	$B \Leftrightarrow CCR$	$CCR \Leftrightarrow CCR$	TMP3 _L ⇒ CCR \$FF:CCR ⇒ TMP3	$B \Rightarrow CCR$ \$FF:CCR $\Rightarrow D$	$X_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow X$	$Y_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow Y$	$SP_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow SP$
3	$00:A \Rightarrow TMP2$ TMP2 _L $\Rightarrow A$	$00:B \Rightarrow TMP2$ $TMP2_L \Rightarrow B$	\$00:CCR ⇒ TMP2 TMP2 _L ⇒ CCR	$TMP3 \Leftrightarrow TMP2$	$D \Leftrightarrow TMP2$	$X \Leftrightarrow TMP2$	$Y \Leftrightarrow TMP2$	$SP \Leftrightarrow TMP2$
4	\$00:A ⇒ D	\$00:B ⇒ D	$00:CCR \Rightarrow D$ B \Rightarrow CCR	TMP3 ⇔ D	D⇔D	$X \Leftrightarrow D$	Y⇔D	$SP \Leftrightarrow D$
5	$00:A \Rightarrow X$ $X_L \Rightarrow A$	$00:B \Rightarrow X$ $X_L \Rightarrow B$	\$00:CCR ⇒ X X _L ⇒ CCR	$TMP3 \Leftrightarrow X$	$D \Leftrightarrow X$	$X \Leftrightarrow X$	$Y \Leftrightarrow X$	$SP \Leftrightarrow X$
6	$00:A \Rightarrow Y$ $Y_L \Rightarrow A$	$O:B \Rightarrow Y$ $Y_L \Rightarrow B$	$00:CCR \Rightarrow Y$ $Y_L \Rightarrow CCR$	$TMP3 \Leftrightarrow Y$	$D \Leftrightarrow Y$	$X \Leftrightarrow Y$	$Y \Leftrightarrow Y$	$SP \Leftrightarrow Y$
7	$00:A \Rightarrow SP$ $SP_L \Rightarrow A$	$00:B \Rightarrow SP$ $SP_L \Rightarrow B$	$OO:CCR \Rightarrow SP$ $SP_L \Rightarrow CCR$	$TMP3 \Leftrightarrow SP$	$D \Leftrightarrow SP$	$X \Leftrightarrow SP$	$Y \Leftrightarrow SP$	$SP \Leftrightarrow SP$

Table A-5. Transfer and Exchange Postbyte Encoding

TMP2 and TMP3 registers are for factory use only.

00 A	10 A	20 A	30 A	40 A	50 A	60 A	70 A	80 A	90 A	Ao A	Bo A
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B	A1 B	B1 B
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
02	12	22	32	42	52	62	72	82	92	A2	B2
-	_	_	_	_	_	_	_	_	_	_	_
03	13	23	33	43	53	63	73	83	93	A3	83
_	_	_	_	_	_	_	_	_	_	_	
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D	A4 D	B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)		(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
05 X	15 X	25)	35 X	15 X	55 X	65 X	75 X	85 X	95 X	A5 X	B5 X
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
06 Y	16 Y	26 1	DOME	46 Y	56 Y	66 Y	76 Y	86 Y	96 Y	A6 Y	B6 Y
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
07 SP	17 SP	27 SP	37 SP	47 SP	57 SP	67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)

Table A-6. Loop Primitive Postbyte Encoding (lb)

Table A-7. Branch/Complementary Branch

Branch			Complementary Branch				
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment
r>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed
r≥m	BGE	2C	N ⊕ V = 0	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed
r≤m	BLE	2F	Z + (N ⊕ V) = 1	r>m	BGT	2E	Signed
r <m< td=""><td>BLT</td><td>2D</td><td>N ⊕ V = 1</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	N ⊕ V = 1	r≥m	BGE	2C	Signed
r>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple
Always	BRA	20	_	Never	BRN	21	Unconditional

For 16-bit offset long branches precede opcode with a \$18 page prebyte.

Binary	Hex	Decimal
0000	0	0
0000	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	А	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Binary, Hex and Decimal Numbers (4-bit representation)

What does a number represent?

Binary numbers are a code, and represent what the programmer intends for the code.

0x72 Some possible meanings: 'r' (ASCII) INC MEM (hh ll) (HC12 instruction) 2.26V (Input from A/D converter) 114₁₀ (Unsigned number) +114₁₀ (Signed number) Set temperature in room to 69 °F Set cruise control speed to 120 mph

Binary to Unsigned Decimal:

Convert Binary to Unsigned Decimal 1111011₂ 1 x 2^6 + 1 x 2^5 + 1 x 2^4 + 1 x 2^3 + 0 x 2^2 + 1 x 2^1 + 1 x 2^0 1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1 123 10

Hex to Unsigned Decimal

Convert Hex to Unsigned Decimal $82D6_{16}$ $8 \times 16^3 + 2 \times 16^2 + 13 \times 16^1 + 6 \times 16^0$ $8 \times 4096 + 2 \times 256 + 13 \times 16 + 6 \times 1$ 33494_{10}

Unsigned Decimal to Hex

Convert Unsigned Decimal to Hex

Division	Q	R		
		Decimal	Hex	
721/16	45	1	1	
45/16	2	13	D	
2/16	0	2	2	

 $721_{10} = 2D1_{16}$

Signed Number Representation in 2's Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 0–7), then the number is positive.

Get decimal equivalent by converting number to decimal, and use the + sign.

Example for 8-bit number:

3A $_{16} \rightarrow + (3 \times 16^{1} + 10 \times 16^{0})_{10} + (3 \times 16 + 10 \times 1)_{10} + 58_{10}$

If the most significant bit is 1 (most significant hex digit 8–F), then the number is negative.

Get decimal equivalent by taking 2's complement of number, converting to decimal, and using – sign.

Example for 8–bit number:

 $A3_{16} \rightarrow (5D)_{16} \\ - (5 \times 16^{1} + 13 \times 16^{0})_{10} \\ - (5 \times 16 + 13 \times 1)_{10} \\ - 93_{10}$

One's complement table makes it simple to finding 2's complements

To take two's complement, add one to one's complement.

Take two's complement of **D0C3**:

2F3C + 1 = 2F3D

Addition and Subtraction of Binary and Hexadecimal Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed

N bit is set if result of operation is negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)

Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0

7A +52	2A +52	AC +8A	AC +72
CC	 7C	36	 1E
C: 0	C: 0	C: 1	C: 1
V: 1	V: 0	V : 1	V: 0
N: 1	N: 0	N: 0	N: 1
Z: 0	Z: 0	Z: 0	Z: 0

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is greater than the minuend

V bit set when N - P = P or P - N = N

N bit set when MSB is 1

Z bit set when result is 0

7A -5C	8A -5C	5C -8A	2C -72
 1E	2E	D2	BA
C: 0	C: 0	C: 1	C: 1
V: 0	V: 1	V: 1	V: 0
N: 0	N: 0	N: 1	N: 1
Z: 0	Z: 0	Z: 0	Z: 0