
 EE 308 Spring 2011

• More on programming in assembly language
• Introduction to Ports on the HC12

o Input and Output Ports
� Simplified input port
� Simplified output port
� Simplified input/output port
� PORTA, PORTB, DDRA, DDRB
� A simple program to use PORTA and PORTB

o Good programming style
o Tips for writing programs
o A program to average the numbers in a memory array
o Flow charts
o Assembly language program
o Assembly listing file

 EE 308 Spring 2011

Input and Output Ports

• How do you get data into a computer from the outside?

Any read from address $0000 gets signals from
outside

 LDAA $00

Puts data from outside into accumulator A.

Data from outside looks like a memory
location.

A Tri-State Buffer acts like a switch

If TRI is not active, the switch is open: OUT
will not be drived by IN
Some other device can drive OUT

 EE 308 Spring 2011

• How do you get data out of computer to the outside?

Any write to address $01 latches data into
FF, so data goes to external pins

 MOVB #$AA,$01

Puts $AA on the external pins

When a port is configured as output and
you read from that port, the data you read
is the data which was written to that port:

 MOVB #$AA, $01
 LDAA $01

Accumulator A will have $AA after this

 EE 308 Spring 2011

• Most I/O ports on MC9S12 can be configured as either input or output

• A write to address 0x0000 writes data to the flip-flop
A read from address 0x0000 reads data on pin

• If Bit 7 of DDRA is 0, the port is an input port. Data written to FF does not get to
pin though tri-state buffer

• If Bit 7 of DDRA is 1, the port is an output port. Data written to flip-flop does get
to pin though tri-state buffer

• DDRA (Data Direction Register A) is located at 0x0002

 EE 308 Spring 2011

 EE 308 Spring 2011

Ports on the HC12

• How do you get data out of computer to the outside?

• A Port on the HC12 is a device that the HC12 uses to control some hardware.

• Many of the HC12 ports are used to communicate with hardware outside of the HC12.

• The HC12 ports are accessed by the HC12 by reading and writing memory locations
$0000 to $03FF.

• Some of the ports we will use in this course are PORTA, PORTB, PTJ and PTP:

• PORTA is accessed by reading and writing address $0000.
- DDRA is accessed by reading and writing address $0002.

• PORTB is accessed by reading and writing address $0001.
- DDRB is accessed by reading and writing address $0003.

• PTJ is accessed by reading and writing address $0268.
- DDRJ is accessed by reading and writing address $026A.

• PTP is accessed by reading and writing address $0258.
- DDRP is accessed by reading and writing address $025A.

• On the DRAGON12-Plus EVB, eight LEDs and four seven-segment
LEDs are connected to PTB.

-Before you can use the eight individual LEDs or the seven-segment LEDs, you
need to enable them.

- Bit 1 of PTJ must be low to enable the eight individual LEDs

- Bits 3-0 of PTP are used to enable the four seven-segment LEDs

* A low PTP0 enables the left-most (Digit 3) seven-segment LED
* A low PTP1 enables the second from the left (Digit 2) seven-segment
LED
* A low PTP2 enables the third from the left (Digit 1) seven-segment LED
* A low PTP3 enables the right-most (Digit 0) seven-segment LED

– To use the eight individual LEDs and turn off the seven-segment LEDs, write
ones to Bits 3-0 of PTP:

 EE 308 Spring 2011

BSET #$0F,DDRP ; Make PTP3 through PTP0 outputs

BSET #$0F,PTP ; Turn off seven-segment LEDs

• On the DRAGON12-Plus EVB, the LCD display is connected to PTK

• When you power up or reset the HC12, PORTA, PORTB, PTJ and PTP are input ports.

• You can make any or all bits of PORTA, PORTB PTP and PTJ outputs by writing a 1 to
the corresponding bits of their Data Direction Registers.

– You can use DBug-12 to manipulate the IO ports on the 68HCS12

* To make PTB an output, use MM to change the contents of address
$0003 (DDRB) to an $FF.

* You can now use MM to change contents of address $0001 (PORTB),
which changes the logic levels on the PORTB pins.

* If the data direction register makes the port an input, you can use MD to
display the values on the external pins.

 EE 308 Spring 2011

Using Port A of the 68HC12

To make a bit of Port A an output port, write a 1 to the corresponding bit of DDRA
(address 0x0002).
To make a bit of Port A an input port, write a 0 to the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port.

DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

Reset 0 0 0 0 0 0 0 0 $0002

For example, to make bits 7−4 output and bits 3−0 of Port A input, write a 0xF0 to
DDRA.
To send data to the output pins, write to PORTA (address 0x0000). When you read from

PORTA input pins will return the value of the signals on them (0 ⇒ 0V, 1 ⇒ 5V); output
pins will return the value written to them.

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Reset - - - - - - - - $0000

Port B works the same, except DDRB is at address 0x0003 and PORTB is at address
0x0001.

 ;A simple program to make PORTA output and PORTB input, then read the

 ; signals on PORTB and write these values out to PORTA

prog: equ $1000

PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03

org prog
movb #$ff,DDRA ; Make PORTA output
movb #$00,DDRB ; Make PORTB input

ldaa PORTB
staa PORTA
swi

 EE 308 Spring 2011

• Because DDRA and DDRB are in consecutive address locations, you could make
PORTA and output and PORTB and input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

 EE 308 Spring 2011

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

• Use comments

• Do not use tricks

2. Make programs easy to modify

• Top-down design

• Structured programming – no spaghetti code

• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to individual instructions

• Top-down design

4. Use names instead of numbers

 EE 308 Spring 2011

Another Example of an Assembly Language Program

• Find the average of the numbers in an array of data.

• The numbers are 8-bit unsigned numbers.

• The address of the first number is $E000 and the address of the final number is $E01F.
There are 32 numbers.

• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

FIND AVERAGE OF NUMBERS IN ARRAY FROM 0XE000 TO 0XE01F
Treat numbers as 8−bit unsigned numbers

4 0xE000

5

1

8

6

11

 0xE01F

 EE 308 Spring 2011

Start with the big picture

Add details to blocks

4 0xE000

5

1

8

6

11

 0xE01F

4 0xE000

5

1

8

6

11

 0xE01F

 EE 308 Spring 2011

Decide on how to use CPU registers for processing data

Find average of 8-bit numbers in array from 0xE000 to 0xE01f

Sum: 16−bit register

 Can use D or Y

 No way to add 8−bit number to D
 Can use ABY to add 8−bit number to Y

 EE 308 Spring 2011

Add more details: Expand another block

X ⇒ 4 0xE000

 5

 1

 8

 6

 11

 0xE01F

 EE 308 Spring 2011

More details: How to tell if number is odd, how to tell when done

How to check if more to do?
If X < 0xE020, more to do.

BLT or BLO?

Addresses are unsigned, so BLO

How to find average? Divide by LEN
To divide, use IDIV

TFR Y,D ; divide in D
LDX #LEN ; divisor in X
IDIV

 EE 308 Spring 2011

Convert blocks to assembly code

X ⇒ 4 0xE000

 5

 1

 8

 6

 11

 0xE01F

 EE 308 Spring 2011

Write program

;Program to average 32 numbers in a memory array

prog: equ $1000
data: equ $2000

array: equ $E000
len: equ $32

org prog

ldx #array ; initialize pointer

ldy #0 ; initialize sum to 0

loop: ldab 0,x ; get number

aby ; odd - add to sum

 inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

tfr y,d ; to divide, need dividend in D

idx #len ; to divide, need divisor in X

 idiv ; D/X quotient in x, remainder in D

stx answer ; done – save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.

 EE 308 Spring 2011

The assembler output for the above program

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line
---- ---- ---------- --------- -----------
1 1 ;Program to average 32 numbers in a memory array
2 2
3 3 0000 2000 prog: equ $2000
4 4 0000 1000 data: equ $1000
5 5
6 6 0000 E000 array: equ $E000
7 7 0000 0020 len: equ 32
8 8
9 9 org prog
10 10
11 11 a002000 CEE0 00 ldx #array ; initialize pointer
12 12 a002003 CD00 00 ldy #0 ; initialize sum to 0
13 13 a002006 E600 loop: ldab 0,x ; get number
14 14 a002008 19ED aby ; odd - add to sum
15 15 a00200A 08 inx ; point to next entry
16 16 a00200B 8EE0 20 cpx #(array+len) ; more to process?
17 17 a00200E 25F6 blo loop ; if so, process
18 18
19 19 a002010 B764 tfr y,d ; To divide, need dividend
 20 20 a002012 CE00 20 ldx #len ; To divide, need divisor
 21 21 a002015 1810 idiv ; D/X quotient in X, remainder
 22 22 a002017 7E10 00 stx answer ; done -- save answer
23 23 a00201A 3F swi
24 24
25 25 org data
26 26 a001000 answer: ds.w 1 ; reserve 16-bit word for 27 27
28 28

Here is the .s19 file:

S11E2000CEE000CD0000E60019ED088EE02025F6B764CE002018107E10003FAB
S9030000FC

