Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

e Using the stack and the stack pointer

o The Stack and Stack Pointer

o The stack is a memory area for temporary storage

o The stack pointer points to the last byte in the stack

o Some instructions which use the stack, and how data is saved
and retrieved off the stack

o Subroutines and the stack

o An example of a simple subroutine

o Using a subroutine with PORTA to make a binary counter on
LEDs

THE STACK AND THE STACK POINTER

* Sometimes it is useful to have a region of memory for temporary storage, which does
not have to be allocated as named variables.

* When we use subroutines and interrupts it will be essential to have such a storage
region.

* Such a region is called a Stack.

* The Stack Pointer (SP) register is used to indicate the location of the last item put onto
the stack.

* When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.

* When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.

* Before you can use a stack you have to initialize the Stack Pointer to point to one
value higher than the highest memory location in the stack.

* For the MC9S12 put the stack at the top of the data space

— For most programs, use $1000 through $2000 for data.

— For this region of memory, initialize the stack pointer to $2000.

— If you need more space for data and the stack, and less for your program, move
the program to a higher address, and use this for the initial value of the stack
pointer.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Use the LDS (Load Stack Pointer) instruction to initialize the stack point.

* The LDS instruction is usually the first instruction of a program which uses the stack.

* The stack pointer is initialized only one time in the program.

* For microcontrollers such as the MC9S12, it is up to the programmer to know how
much stack his/her program will need, and to make sure enough space is allocated for the

stack.

If not enough space is allocated the stack can overwrite data and/or code, which will
cause the program to malfunction or crash.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The stack is an array of memory dedicated to temporary storage

SP points to the location last item

placed in block
SP decreases when you put an item
) on stack
Ox1EF5
0x1EF6 SP increases when you pull item
0x 1EF7 from stack
For HC12 EVBU, use 0x3C00 as
initial SP:
STACK: EQU $2000
Ox IEFF LDS #STACK
0x1F00
Ox1FO01
0x1F02 A B
l D : :
X
Y
sp
PC
CCR

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

An example of some code which used the stack

Stack Pointer

Initialize ONCE before first use (LDS #STACK)

t
0x 1FE5S Points to last used storage location
Decreases when you put something on stack
Ox1FF6 Increases when you take something off stack
0x1FF7
STACK: equ $2000
CODE: org $2000
Ids #STACK
Idaa #$2e
Idx #$1254
psha
0x1FFB pshx
0x1FFC clra
0x 1FFD ldx #$ffff
Ox1FFE CODE THAT USES A & X
0X1FFF
pulx
pula

s]

x| |

SP| ‘

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

PSHA Push A onto Stack PSHA

Operation: (SP)- 50001 = 5P
(A) = Mizp

Description: Stacks the content of accumulator A. The stack pointer is decremented
by one. The content of A is then stored at the address the SP points to.

Fush instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

) S X H 1 N Z W c
CCR Details: | | | | | | | | |
Access Detail
Add
Source Form M r:EE Object Code
ode HCS512 MEBHC12
PEHA IMH 28 O= D=

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Subroutines

* A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.

* Example:
— Math functions, such as square root

* Because a subroutine can be called from different places in a program, you cannot get
out of a subroutine with an instruction such as jmp label because you would need to
jump to different places depending upon which section of code called the subroutine.

* When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.

— This is done automatically for you when you get to the subroutine by using the
JSR (Jump to Subroutine) or BSR (Branch to Subroutine) instruction. This
instruction pushes the address of the instruction following the JSR/BSR
instruction on the stack.

* After the subroutine is done executing its code it needs to return to the address saved on
the stack.

— This is done automatically for you when you return from the subroutine by
using the RTS (Return from Subroutine) instruction. This instruction pulls the
return address off of the stack and loads it into the program counter, so the
program resumes execution of the program with the instruction following that
which called the subroutine.

The subroutine will probably need to use some MC9S12 registers to do its work.
However, the calling code may be using its registers for some reason - the calling code
may not work correctly if the subroutine changes the values of the HC12 registers.

— To avoid this problem, the subroutine should save the MC9S12 registers before
it uses them, and restore the MC9S12 registers after it is done with them.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

BSR

Operation

CCR
Effects

Code and
CPU

Cycles

[5P) — 80002 = SP
RTMp: RTN), = Mgp:Mzp , 4
(PC) -+ 30002 + el = PC

Branch to Subroutine

BSR

Seis up conditions to retum to normal program flow | then transfers control to & subrouatine.
Uses the address of the instruction after the BSR as a return addmess.

Decrements the SP by two, to allow the two byles of the return address to be stacked.
Stacks the metum address (the SP poinis to the high byle of the reum address).

Branches to a location determined by the branch offset

Subroutines are normally terminated with an RT3 instroction, which restores the return

address from the stack.

F X H I H Z2 V¥V C

Address Maching
Sourcs Form Mods Cods (Hax] CPU Cycles
BER reid REL 0T EPFPF

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

RTS

Operation

CCR
Effects

Code and
CPU

Cyucles

Return from Subroutine

(MgpiiMep , 1) = PCy: POy,
(5F) + 20002 = 5P

Restones the value of PC from the stack and increments 5P by two. Program e xecution
continues at the address restored from the stack.

RTS

5 X H | N Z V C
-l-1-0-0-1-1-1-1
Source Form Addrass Eﬂdﬂ:ﬁ] CPU Cycles
RTE I in OERRT

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Example of a subroutine to delay for a certain amount of time

; Subroutine to wait for 100 ms

delay: ldaa #100 ; execute outer loop 100 times
loop2: Idx #8000 ; want inner loop to last Ims
loopl: dbne x,loopl ; inner loop — 3 cycles x 8000 times
dbne a,loop2
rts

* Want inner loop to last for 1 ms. MC9S12 runs at 24,000,000 cycles/second, so 1 ms
is 24,000 cycles.

* Inner loop should be 24,000 cycles/ (3 cycles/loop) = 8,000 loops (times)
* Problem: The subroutine changes the values of registers A and X

* To solve this problem, save the values of A and X on the stack before using them, and
restore them before returning.

; Subroutine to wait for 100 ms

delay: psha ; save registers

pshx

Idaa #100 ; execute outer loop 100 times
loop2: Idx #8000 ; want inner loop to last Ims
loopl: dbne x,loopl ; inner loop — 3 cycles x 8000 times

dbne a,loop2

pulx ; restore registers

pula

rts

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

; Program to make a binary counter on LEDs

; The program uses a subroutine to insert a delay
; between counts

’

; Does not work on Dragonl2-Plus. Need to write to PTJ

: to enable LEDs
prog: equ $2000
data: equ $1000
STACK: equ $2000
PORTB: equ $0001
DDRB: equ $0003
org prog
Ids #STACK
Idaa #$ff
staa DDRB
clr PORTB
loop: jsr delay
inc PORTB
bra loop

>

’

>

’

’

>

* initialize stack pointer
. put all ones into DDRB
: to make PORTB output
- put $00 into PORTB

wait a bit

. add one to PORTB
: repeat forever

; Subroutine to wait for a few milliseconds

delay:

loop2:
loop1:

psha
pshx
ldaa
1dx
dbne
dbne
pulx
pula
rts

#100
#8000

x,loop1
a,loop2

; save registers

’

; code to
; delay for 100 ms

b

; restore registers

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Another example of using a subroutine

Using a subroutine to wait for an event to occur, then take an action.

* Wait until bit 7 of address $00CC is set.

* Write the value in ACCA to address $00CF.

; This routine waits until the MC9S12 serial

; port is ready, then sends a byte of data
; to the MC9S12 serial port

putchar:

brelr $00CC.#$80, putchar

staa
rts

$00CF

* Program to send the word hello, world! to the MC9S12 serial port

; Program fragment to write the word “hello, world!” to the

; MC9S12 serial port

loop:

done:

str:

Idx
Idaa
beq
jsr
bra
swi

dc.b
fc.b

#str
1,x+
done
putchar
loop

; get next char
;s char == 0 => no more

“hello, world!”

$0A,$0D,0

; CRLF

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Here is the complete program to write a message to the screen

prog:
data:
stack:
SCIOSR1:
SCIODRL:

loop:

done:

putchar:

str:

equ $2000
equ $1000
equ $2000
equ $00CC ; SCIO status reg 1
equ $00CF ; SCIO data reg low
org prog
lds #stack
ldx #str
ldaa 1,x+ ; get next char
beq done ; char == 0 = no more
jsr putchar
bra loop
swi
brelr SCIOSR1,$80,putchar ; check for SCI port ready
staa SCIODRL ; put character onto SCI port
rts
org data
fcc "hello, world"'
de.b $0a,$0d,0 ; LF CR terminating zero

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using DIP switches to get data into the MC9S12
* DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

L]

* To use DIP switches, connect one end of each switch to a resistor

* Connect the other end of the resistor to +5 V

* Connect the junction of the DIP switch and the resistor to an input port on the MC9S12
* The Dragon12-Plus has eight dip switches connected to Port H (PTH)

Using DIP Switches
+5V +5V +5V +5V

11{1
SARRR R

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* When the switch is open, the input port sees a logic 1 (+5 V)

* When the switch is closed, the input sees a logic 0 (0 V)

Looking at the state of a few input pins
* Want to look for a particular pattern on 4 input pins

— For example want to do something if pattern on PH3-PHO is 0110
* Don’t know or care what are on the other 4 pins (PH7-PH4)

* Here is the wrong way to doing it:

ldaa PTH
cmpa #$06
beq task

* If PH7-PH4 are anything other than 0000, you will not execute the task.

* You need to mask out the Don’t Care bits before checking for the pattern on the bits
you are interested in

ldaa PTH
anda #%00001111
cmpa #% 00000110
beq task

* Now, whatever pattern appears on PB7-4 is ignored

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using an HC12 output port to control an LED

* Connect an output port from the HC12 to an LED.
Using an output port to cantrol an IED

w1

=

AVAEANE 4

Fesistor, IED, and
graund connected

When a crrat flows

through an IED, it
emits light

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Making a pattern on a seven-segment LED

* Want to generate a particular pattern on a seven-segment LED:

* Determine a number (hex or binary) which will generate each element of the pattern

— For example, to display a 0, turn on segments a, b, ¢, d, e and f, or bits 0, 1, 2, 3,
4 and 5 of PTH. The binary pattern is 0011 1111, or $3f.

— To display 0 2 4 6 8, the hex numbers are $3f, $5b, $66, $7d, $7f.
* Put the numbers in a table
* Go through the table one by one to display the pattern

* When you get to the last element, repeat the loop

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Flowchart to display a pattern of lights on a set of LEDs

P—
table 0x3f —f— X START
Ox5k
OxE6 ldaa $5f£F
staa DDRA
0x7d
table end 0xT£ ldx ftable
E——
ldaa O,=

staa PORTR

inx

cpx ftable end
bls 1z

bra 11

What are we missing in this program?

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

; Program to display a pattern or lights
; on a 7-semgent display

prog:
data:
stack:
PORTB:
DDRB:

11:
12:

delay:

loop2:
loop1:

table:

table_end:

equ $2000
equ $1000
equ $2000
equ $0001
equ $0003
org prog
Ids #stack
ldaa #$ff
staa DDRB
ldx #table
Idaa 1,x+
staa PORTB
jsr delay
cpx #table_end
bls 12
bra 11
psha
pshx
Ildaa #100
ldx #8000
dbne x,loopl
dbne a,loop2
pulx
pula
rts
org data
deb $3f
deb $5b
deb $66
deb $7d
deb $7f

; Initialize stack pointer

; Make PTB output
;s OxFF -> DDRB

; Start pointer at table
; Get value; point to next

; Update LEDs

; Wait a bit

s More to do?

; Yes, keep going through table
; At end; reset pointer

; save the A and X registers onto the Stack

; loop 100 times the inner loop
; the inner loop takes 1 ms

; restore the values of X and A registers

; return from the subroutine

Co O A N O

