Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Review Exam 1

e Numbers

— Decimal to Hex (signed and unsigned)

— Hex to Decimal (signed and unsigned)

— Binary to Hex

— Hex to Binary

— Addition and subtraction of fixed-length hex numbers
— Overflow, Carry, Zero, Negative bits of CCR

* Programming Model
— Internal registers — A, B, (D = AB), X, Y, SP, PC, CCR
* Addressing Modes and Effective Addresses

— INH, IMM, DIR, EXT, REL, IDX (Not Indexed Indirect)
— How to determine effective address

* Instructions
— What they do - Core Users Guide
— What machine code is generated
— How many cycles to execute
— Effect on CCR
— Branch instructions — which to use with signed and which with unsigned

e Machine Code

— Reverse Assembly

e Stack and Stack Pointer

— What happens to stack and SP for instructions (e.g., PSHX, JSR)
— How the SP is used in getting to and leaving subroutines

* Assembly Language
— Be able to read and write simple assembly language program

— Know basic assembler directives — e.g., equ, dc.b, ds.w
Flow charts

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Binary, Hex and Decimal Numbers (4-bit
representation)

Binary Hex Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Binary to Unsigned Decimal:

Convert Binary to Unsigned Decimal

1111011 ,
1x2°+1x2°+1x2%+1x2°+0x2%+1x2"'+1x2°
I1x64+1x32+1x16+1x8+0x4+1x2+1x1
123 19

Hex to Unsigned Decimal

Convert Hex to Unsigned Decimal
82D6 6
8x16°+2x16°+13x16' +6x 16
8x4096+2x256+13x16+6x 1
33494 |

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Unsigned Decimal to Hex
Convert Unsigned Decimal to Hex

Division Q R
Decimal Hex
721/16 45 1 1
45/16 2 13 D T
2/16 0 2 2

721 190 = 2D1 46

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 0-7), then the number
is positive.
Get decimal equivalent by converting number to decimal, and use the positive (+) sign.

Example for 8—bit number:
3A 16>+ (3x16'+10x 16°) 10

+(3x16 + 10x1)
+5810

If the most significant bit is 1 (most significant hex digit 8—F), then the number is
negative.

Get decimal equivalent by taking 2’s complement of number, converting to decimal,
and using negative (—) sign.

Example for 8—bit number:

A3 —>- (5D) 16
- (5x16'+13x16") 4
-(5x16 +13x1)
- 93

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

One’s complement table makes it simple to finding 2’s complements

=
|

bt
53|

0o

1 » One’s complement

[TERR

| >
» o

i
L

One’s complement —<€——

o
e

To take two’s complement, add one to one’s complement.
Take two’s complement of DOC3:

2F3C + 1 =2F3D

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Addition and Subtraction of Binary and Hexadecimal Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed
N bit is set if result of operation is negative (MSB = 1)
Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)

Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bitset when P+ P=NorN+N=P

N bit set when MSB of result is 1

Z bit set when result is 0

7A AC
+52 +72
cc E
C:0 C:1
Vi1 V: 0
N:1 N: 0

Z:0 Z:0

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Subtraction of Hexadecimal Numbers
SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is greater than the
minuend

V bitset when N-P=PorP-N=N
N bit set when MSB is 1

Z bit set when result is 0

TA 2C

-5C =72

1E BA
C:0 C:1
V:0 V:0
N: 0 N: 1

Z:0 Z: 0

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Programming Model

7 A 0T B 0 &BITACCUMULATORS A AND B
15 4]] ?EEEIT DOUBLE ACCIMULATOR D
15 [0| INDEX REGISTER X
15) 0| INDEXREGISTERY
15 5P 0| STACK POINTER
15 pc 0| PROGRAM COUNTER
EAH I NI VG CONDITION GODE REGISTER

Figure 2-1. Programming Model

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Addressing Modes and Effective Addresses

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ;AddBto A(A)+(B)—> A
18 06

CLRA ;Clear A0 —> A

87

The HC12 does not access memory - There is no effective address

The Extended (EXT) addressing mode

Instructions which give the 16-bit address to be accessed

LDAA $1000 ; ($1000) — A
B6 10 00 Effective Address: $1000
STAB $1003 ; (B) = $1003
7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op code

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The Direct (DIR) addressing mode
Direct (DIR) Addressing Mode

Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) — A

96 20 Effective Address: $0020
STX $21 ; (X) — $0021:$0022

5E 21 Effective Address: $0021

8-LSB of effective address is specified by byte following op code

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 317> A

B6 17 Effective Address: PC + 1
ADDA #10 ; (A)+$0A —» A

8B 0A Effective Address: PC + 1

Effective address is the address following the op code

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X
INC 2,.X- ; Post—decrement Indexed

; Increment the number at address (X),
; then subtract 2 from X
62 3E Effective address: contents of X

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

INDEXED ADDRESSING MODES

Eﬁﬁc’ai"ﬂ valie in X Recd sters

Excample AEkbess Offast After Done To Usa
Constant Offset IR N X () +n 0 to FFEF) X Y, 5P, BC
Constant Offset IDAA —n, X {(X)—n 0 to FEEF] = Y, 8¢, BC
Postincranent IDBA n, X+ 0 1to8 {X)+n % Y =P
Preancoament IR N +X (X)+n lto 8 {(X)+n X Y, =
Postdecrarent IDRA n, X () lto 8 (X)—n X Y =
Prdboroment A& n,—X (X)—n lto 8 {(X)—n X Y, =
AT Offsat IDAA A, X (X)+(@) | 0toEF = X, Y, SB, BC

IDAA B, X (X)+(B) | 0 toFF

IDAA D, X G0+@) | 0 to FEEF

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch instructions.

Branch instruction: One byte following op code specifies how far to branch

Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(BRA) 2035 PC +2 + 0035 = PC

(BRA) 20C7 PC +2 + FFC7 — PC
PC +2-0039 — PC

Long branch instruction: Two bytes following op code specifies how far to branch

Treat the offset as an unsigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(LBEQ) 182702 1A If Z==1then PC + 4 + 021A — PC
If Z==0then PC+4 — PC

When writing assembly language program, you don’t have to calculate offset

You indicate what address you want to go to, and the assembler calculates the offset

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Instructions: Machine code, how many cycles to
execute, effect on CCR, and branch instructions

CPU cycles of the 68HC12
* 68HC12 works on 48 MHz clock
* Each processor cycle takes 41.7 ns (1/24 MHz) to execute

* You can determine how many cycles an instruction takes by looking up the CPU cycles
for that instruction in the Core Users Guide.

2000 org $2000 ; /nst Mode Cycles
2000 C6 0A ldab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 04 31 FC dbne b,Joop ; DBNE (REL) 3
2006 3F swi ; SWI 9

The program executes the ldab #10 instruction once (which takes one cycle). It then goes
through loop 10 times (which has two instructions, on with one cycle and one with three
cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

I+10x(1+3)+9=50

50 cycles = 50 x 41.7 ns/cycle = 2.08 us

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Effects of instructions on CCR during execution of program.

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Adar Maching Access Detdl
Source Fom ration SEHI|NZVC
i Moe | codngfer) |acst WSR2
BLSmE Eranch I Lower of Same REL (23 = [l | ————| ———-
[FC+ Z= 1} jwneigned)
BLTmH Branch I Less Than REL |2D rr P | ———|l =———-
[EH &V = 1) [signed)
EMI =8 Branch I Winus (i N =] REL |ZE rT (s —
ENEmE Branch I kot Egual iT =) REL |2& rr i —_—
BPLmE Branch I PRe TR =0) REL |2A rr [Tl —_—
FETYT Branch AWays [1=1) FEL —
EACLA g2, mekd g Drareh T W) = mm) - 0 OR S—
DACLA qoriéa mekdl mB | ¥ AN Ssiected Bsje) Ciear) 3 v}
BACLA qond) sy mekd reld DX
BACLA o xysp, mekd. mE DK
BACLA oS ypspy meks rad Iz
AN il Drarch Kiaver i £ -) REL T
EFSET Opid DEAD, T P p— TiH -
BASET aprifa mekd, m=e ¥ Al Szisrted - EXT
EARSET opmd xysp. mekd mE | : ox
BRSET annd s mekd g X1
BRSET norié_ys. maks mE Xz
B3ET i, mekd M)+ |mm] = M DA [ecmm AAD-
ESET qorfée, makd Set BAz) In Memery EXT (1C mh 11 =m
ESET qoodd xpsn skl OX (0C = mm
ESET qoud,xpep, mekd IDK1 |OC xb £f mm
BSET quoTamen mekd IDK2 |OC xb = ff mo
B3R mE [EF)—2 — 55, TR AN, — Mg blp. 1 REL |07 =r e
Submuling BACNsE - PC)
Branch 1o Submuine
BvCmE Branch I Owesfios Bt Ciear [V - 0 EL |2E 1T ey | -] ———
EVE mE Branch I Owerfiom B 288 1Y = 1) EL |29 1T T e
CaAll ogriéa, page [BF)— 2 = 37; ATH;ATH) == M,g:-rld?_" EXT |4A mh 11 pg gniss —_—
Call oo xpsp. page [BF)— 1 = 55, [PPG) =s Mgp: DX (48 xb pg gniss
Call agwdxesp, pag o = PRAGE regiaar; Jrn-;rap-m'es + PC IDK1 |4E xb 2 pg gniss
CalL o 6.5 psn, page IDN2 |4E xb aa I pg tos]
CALL [Ty Call subrmutne In exEndes mamory IDICK] |4E xb LgnESTEE ==
Call [t & xpsp] [Program may 0= incaied o andiher Xy |4E xb aa r2 1 IL quEsFTT E11qnEsri
EXCENSAN MEMOry page.)
Indlirec! mades Qet ogrEm odness
=i new [value based on poiner
CoA -3 BH [18 27 o0) [— Y
Compare 881 Acuruigas
CLC D=t C M |10 FE [B =———-]| -—0
Taslgas sNOCC s2FE
CU U= WM |10 =F T o[-0 ——
TaEgasm sNOCC s5EF
jenablos Hod inampis)

6.3 Condition Code Changes

The following special characters are used to describe the effects of
instruction execution on the status bits in the condition code register.
— — Status bit net affected by operation
0 — Status bit cleared by cperation
1 — Status bit set by operation
A — Status bit affected by operation
|l — Status bit may be cleared or remain set, but is not set
by operation.
fI — Status bit may be set or remain cleared, but is not
cleared by operation.
7 — Status bit may be changed by operation, but the final
state is not defined.

| — Status bit used for a special purpose

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Which branch instruction should you use?

Branchif A > B
Is OxFF > 0x00?

If unsigned, OxFF = 255 and 0x00 = 0,
so OxFF > 0x00

If signed, OxFF = -1 and 0x00 =0,
so OxFF < 0x00

Using unsigned numbers: BHI
Using signed numbers: BGT
For unsigned numbers, use branch instructions which checks C bit

For signed numbers, use branch instructions which checks V bit

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Reverse Assembly

Disassembly of an HC12 Program
* It is sometimes useful to be able to convert HC12 op codes into mnemonics.
For example, consider the hex code:

ADDR DATA

2000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

¢ To determine the instructions, use:

Table A-2 of the HCS12 Core Users Guide to start with.
Table A-3 for indexed addressing mode

Table A-5 for transfer and exchange instructions

Table A-6 for postbyte encoding.

* Use up all the bytes for one instruction, then go on to the next instruction.

Cé6 05 = LDAA #$05 two-byte LDAA, IMM addressing mode
CE 20 00 = LDX #$2000 three-byte LDX, IMM addressing mode
E6 01 = LDAB 1,X two to four-byte LDAB, IDX addressing

mode. Operand 01 => 1,X, a 5b constant
offset which uses only one postbyte
18 06 = ABA two-byte ABA, INH addressing mode
04 35 EE = DBNE X,(-18) three-byte loop instruction
Postbyte 35 indicates DBNE X, negative
3F = SWI one-byte SWI, INH addressing mode

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Stack and Stack Pointer

THE STACK AND THE STACK POINTER
* When we use subroutines and interrupts it is essential to have such a storage region.
* Such a region is called a Stack.

* The Stack Pointer (SP) register is used to indicate the location of the last item put onto
the stack.

* When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.

* When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.

* Before you can use a stack you have to initialize the Stack Pointer to point to one
value higher than the highest memory location in the stack.

* Use the LDS (Load Stack Pointer) instruction to initialize the stack point.
* The LDS instruction is usually the first instruction of a program which uses the stack.

* The stack pointer is initialized only one time in the program.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

PSHA

Operation:

Description:

CCR Details:

Push A onto Stack PSHA

(SP)— 50001 = 5P
(A) = Mizpy

Stacks the content of accumulator A. The stack pointer is decremented
by one. The content of A is then stored at the address the SP poinis to.

Fush instructicns are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complemeantary pull
instructions can be used to restore the saved CPU registers just hefare
returning from the subroutine.

Source Form

Access Detail
Address Object Code
Mode HCS12 MEBHC12Z

PSHA

INH a8 Os Q=

PSHX

Operation:

Description:

CCR Details:

Push Index Register X onto Stack PS Hx

(SP)— $0002 = SP
(%2 %) = Migpy - Mispayy

Stacks the content of index register X. The stack pointer is decremented by
two. The content of X is then stored at the address to which the SP points.
After PSHX executes, the SP points to the stacked value of the high-order
half of X.

Push instructions are commonly usad to save the contents of one or more
CPU registers at the start of a subroutine. Complementary pull instructions
can be used to restore the saved CPU registers just before retuming from
the subroutine.

§ X H I N Z V C

Source Form

Access Detail
Address Object Code
Mode HCS12 MEBHC12

PSHX

IMH 34 o0s 0s

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

PULA

Operation:

Description:

CCR Details:

Mizp))= A
(5P + 50001 = 5P

Pull A from Stack

PULA

Accumulator A is loaded from the address indicated by the stack pointer.
The SP is then incremented by ane.

Pull instructions are commonly used at the end of a subroutine, to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

N Z V¥V C

s X H 1

Source Form

Address
Mode

Object Code

HCS12

Access Detail
MEBHC12

PULA

INH

3z

uro

uro

PULX

Pull Index Register X from Stack

PULX

Operation: (Msp) - Misp,q)) = Xy 2 X
(SP) + 50002 = 5P
Description: Index register X is loaded from the address indicated by the stack pointer.
The SP is then incremented by two.
Pullinstructions are commonly used at the end of a subroutine to restore the
contents of CPU registers that were pushed onto the stack before
subroutine execution.
i S X H I N Z ¥V C
CCR Details: | | | | | | | | |
A Detail
Source Form Address Object Code coess '
Mode HCS12 MEBHC12
PULX IH 30 oro uro

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Subroutines

* A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.

* Example:
— Math functions, such as square root

* Because a subroutine can be called from different places in a program, you cannot get
out of a subroutine with an instruction such as jmp label because you would need to
jump to different places depending upon which section of code called the subroutine.

* When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.

— This is done automatically for you when you get to the subroutine by using the
JSR (Jump to Subroutine) or BSR (Branch to Subroutine) instruction. This
instruction pushes the address of the instruction following the JSR/BSR
instruction on the stack.

* After the subroutine is done executing its code it needs to return to the address saved on
the stack.

— This is done automatically for you when you return from the subroutine by
using the RTS (Return from Subroutine) instruction. This instruction pulls the
return address off of the stack and loads it into the program counter, so the
program resumes execution of the program with the instruction following that
which called the subroutine.

The subroutine will probably need to use some MC9S12 registers to do its work.
However, the calling code may be using its registers for some reason - the calling code
may not work correctly if the subroutine changes the values of the HC12 registers.

— To avoid this problem, the subroutine should save the MC9S12 registers before
it uses them, and restore the MC9S12 registers after it is done with them.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

BSR Branch to Subroutine BSR

Ciperation

CCR
Effects

Code and
CPU

Cycles

(5P) — $0002 = 5P
BTN BTM, = MgpMgp
(PC) + 80002 + @) = PC

Sats up conditions 10 r2ium to normal program flow, then transfers control to a subroatine.
Uses the addmess of the instruction after the BSR as a return address.

Decremenis the SP by two, to allow the two byies of the retum address to be stacked.
Stacks the retum address (the 5P points to the high byle of the etum address).
Branches to a location determined by the branch offset

Subroutines are normally terminated with an RTS mstroction, which restores the return
addmess from the stack.

§F X H I H Z V C

Address Machine
Source Form Moa Cods [Ha) CPU Cycles
BER reid REL o7 T ERPP

RTS Return from Subroutine RTS

Operation

CCR
Effects

Code and
CPU

Cyucles

(MgpiiMep , 1) = PCy: POy,
(5F) + 20002 = 5P

Restones the value of PC from the stack and increments 5P by two. Program e xecution
continues at the address restored from the stack.

Lddress Maching
Source Form Mods Cods [Hax) CPU Cycles

RTE I an DZPFR

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Example of a subroutine to delay for a certain amount of time

; Subroutine to wait for 100 ms

delay: ldaa #100 ; execute outer loop 100 times
loop2: ldx #8000 ; want inner loop to last Ims
loopl: dbne x,loopl ; inner loop — 3 cycles x 8000 times
dbne a,loop2
rts

* Want inner loop to last for 1 ms. MC9S12 runs at 24,000,000 cycles/second, so 1 ms
is 24,000 cycles.

* Inner loop should be 24,000 cycles/ (3 cycles/loop) = 8,000 loops (times)
* Problem: The subroutine changes the values of registers A and X

* To solve this problem, save the values of A and X on the stack before using them, and
restore them before returning.

; Subroutine to wait for 100 ms

delay: psha ; save registers

pshx

Idaa #100 ; execute outer loop 100 times
loop2: ldx #8000 ; want inner loop to last Ims
loopl: dbne x,loopl ; inner loop — 3 cycles x 8000 times

dbne a,loop2

pulx ; restore registers

pula

rts

