
 EE 308 Spring 2011

Review Exam 1

• Numbers

– Decimal to Hex (signed and unsigned)
– Hex to Decimal (signed and unsigned)
– Binary to Hex
– Hex to Binary
– Addition and subtraction of fixed-length hex numbers
– Overflow, Carry, Zero, Negative bits of CCR

• Programming Model

– Internal registers – A, B, (D = AB), X, Y, SP, PC, CCR

• Addressing Modes and Effective Addresses

– INH, IMM, DIR, EXT, REL, IDX (Not Indexed Indirect)
– How to determine effective address

• Instructions

– What they do - Core Users Guide
– What machine code is generated
– How many cycles to execute
– Effect on CCR
– Branch instructions – which to use with signed and which with unsigned

• Machine Code

– Reverse Assembly

• Stack and Stack Pointer

– What happens to stack and SP for instructions (e.g., PSHX, JSR)
– How the SP is used in getting to and leaving subroutines

• Assembly Language

– Be able to read and write simple assembly language program
– Know basic assembler directives – e.g., equ, dc.b, ds.w
Flow charts

 EE 308 Spring 2011

Binary, Hex and Decimal Numbers (4-bit
representation)

Binary

Hex

Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Binary to Unsigned Decimal:
Convert Binary to Unsigned Decimal
1111011 2

1 x 26 + 1 x 2 5 + 1 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
123 10

Hex to Unsigned Decimal
Convert Hex to Unsigned Decimal
82D6 16
8 x 163 + 2 x 162 + 13 x 161 + 6 x 160

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1
33494 10

 EE 308 Spring 2011

Unsigned Decimal to Hex
Convert Unsigned Decimal to Hex

Division Q R
Decimal Hex

721/16
45/16
2/16

45
2
0

1
13
2

1
D
2

721 10 = 2D1 16

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 0−7), then the number
is positive.
Get decimal equivalent by converting number to decimal, and use the positive (+) sign.

Example for 8−bit number:

3A 16 −> + (3 x 161 + 10 x 160) 10
 + (3 x 16 + 10 x 1) 10
 + 58 10

If the most significant bit is 1 (most significant hex digit 8−F), then the number is
negative.
Get decimal equivalent by taking 2’s complement of number, converting to decimal,
and using negative (−) sign.

Example for 8−bit number:

A316 −> - (5D) 16

 - (5 x 161 + 13 x 160) 10
 - (5 x 16 + 13 x 1) 10
 - 93 10

 EE 308 Spring 2011

One’s complement table makes it simple to finding 2’s complements

To take two’s complement, add one to one’s complement.

Take two’s complement of D0C3:

2F3C + 1 = 2F3D

One’s complement

One’s complement

 EE 308 Spring 2011

Addition and Subtraction of Binary and Hexadecimal Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed

N bit is set if result of operation is negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)

Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0

 7A AC
+52 +72
----- ------
 CC 1E

C: 0 C: 1

V: 1 V: 0

N: 1 N: 0

Z: 0 Z: 0

 EE 308 Spring 2011

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is greater than the
minuend

V bit set when N - P = P or P - N = N

N bit set when MSB is 1

Z bit set when result is 0

 7A 2C
 -5C -72
 ----- ------
 1E BA

C: 0 C: 1

V: 0 V: 0

N: 0 N: 1

Z: 0 Z: 0

 EE 308 Spring 2011

Programming Model

 EE 308 Spring 2011

Addressing Modes and Effective Addresses

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) → A
18 06

CLRA ; Clear A 0 → A
87

The HC12 does not access memory - There is no effective address

The Extended (EXT) addressing mode

Instructions which give the 16−bit address to be accessed

LDAA $1000 ; ($1000) → A
B6 10 00 Effective Address: $1000

STAB $1003 ; (B) → $1003
7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op code

 EE 308 Spring 2011

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode

Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) → A
96 20 Effective Address: $0020

STX $21 ; (X) → $0021:$0022
5E 21 Effective Address: $0021

8-LSB of effective address is specified by byte following op code

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 ; $17 → A
B6 17 Effective Address: PC + 1

ADDA #10 ; (A) + $0A → A
8B 0A Effective Address: PC + 1

Effective address is the address following the op code

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

INC 2,X− ; Post−decrement Indexed

; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X

 EE 308 Spring 2011

INDEXED ADDRESSING MODES

 EE 308 Spring 2011

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch instructions.

Branch instruction: One byte following op code specifies how far to branch

Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(BRA) 20 35 PC + 2 + 0035 → PC

(BRA) 20 C7 PC + 2 + FFC7 → PC

 PC + 2 − 0039 → PC

Long branch instruction: Two bytes following op code specifies how far to branch

Treat the offset as an unsigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(LBEQ) 18 27 02 1A If Z == 1 then PC + 4 + 021A → PC

If Z == 0 then PC + 4 → PC

When writing assembly language program, you don’t have to calculate offset
You indicate what address you want to go to, and the assembler calculates the offset

 EE 308 Spring 2011

Instructions: Machine code, how many cycles to
execute, effect on CCR, and branch instructions

CPU cycles of the 68HC12

• 68HC12 works on 48 MHz clock

• Each processor cycle takes 41.7 ns (1/24 MHz) to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles
for that instruction in the Core Users Guide.

2000 org $2000 ; Inst Mode Cycles
2000 C6 0A ldab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 04 31 FC dbne b,loop ; DBNE (REL) 3
2006 3F swi ; SWI 9

The program executes the ldab #10 instruction once (which takes one cycle). It then goes
through loop 10 times (which has two instructions, on with one cycle and one with three
cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

1 + 10 × (1 + 3) + 9 = 50

50 cycles = 50 × 41.7 ns/cycle = 2.08 µs

 EE 308 Spring 2011

Effects of instructions on CCR during execution of program.

 EE 308 Spring 2011

Which branch instruction should you use?

Branch if A > B
Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0,

so 0xFF > 0x00

If signed, 0xFF = −1 and 0x00 = 0,

so 0xFF < 0x00

Using unsigned numbers: BHI

Using signed numbers: BGT

For unsigned numbers, use branch instructions which checks C bit

For signed numbers, use branch instructions which checks V bit

 EE 308 Spring 2011

Reverse Assembly

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert HC12 op codes into mnemonics.

For example, consider the hex code:

ADDR DATA

2000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

• To determine the instructions, use:

Table A-2 of the HCS12 Core Users Guide to start with.
Table A-3 for indexed addressing mode
Table A-5 for transfer and exchange instructions
Table A-6 for postbyte encoding.

• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 ⇒⇒⇒⇒ LDAA #$05 two-byte LDAA, IMM addressing mode

CE 20 00 ⇒⇒⇒⇒ LDX #$2000 three-byte LDX, IMM addressing mode

E6 01 ⇒⇒⇒⇒ LDAB 1,X two to four-byte LDAB, IDX addressing
 mode. Operand 01 => 1,X, a 5b constant
offset which uses only one postbyte

18 06 ⇒⇒⇒⇒ ABA two-byte ABA, INH addressing mode

04 35 EE ⇒⇒⇒⇒ DBNE X,(-18) three-byte loop instruction
Postbyte 35 indicates DBNE X, negative

3F ⇒⇒⇒⇒ SWI one-byte SWI, INH addressing mode

 EE 308 Spring 2011

Stack and Stack Pointer

THE STACK AND THE STACK POINTER

• When we use subroutines and interrupts it is essential to have such a storage region.

• Such a region is called a Stack.

• The Stack Pointer (SP) register is used to indicate the location of the last item put onto
the stack.

• When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.

• When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.

• Before you can use a stack you have to initialize the Stack Pointer to point to one
value higher than the highest memory location in the stack.

• Use the LDS (Load Stack Pointer) instruction to initialize the stack point.

• The LDS instruction is usually the first instruction of a program which uses the stack.

• The stack pointer is initialized only one time in the program.

 EE 308 Spring 2011

 EE 308 Spring 2011

 EE 308 Spring 2011

Subroutines

• A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.

• Example:

– Math functions, such as square root

• Because a subroutine can be called from different places in a program, you cannot get
out of a subroutine with an instruction such as jmp label because you would need to
jump to different places depending upon which section of code called the subroutine.

• When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.

– This is done automatically for you when you get to the subroutine by using the
JSR (Jump to Subroutine) or BSR (Branch to Subroutine) instruction. This
instruction pushes the address of the instruction following the JSR/BSR
instruction on the stack.

• After the subroutine is done executing its code it needs to return to the address saved on
the stack.

– This is done automatically for you when you return from the subroutine by
using the RTS (Return from Subroutine) instruction. This instruction pulls the
return address off of the stack and loads it into the program counter, so the
program resumes execution of the program with the instruction following that
which called the subroutine.

The subroutine will probably need to use some MC9S12 registers to do its work.
However, the calling code may be using its registers for some reason - the calling code
may not work correctly if the subroutine changes the values of the HC12 registers.

– To avoid this problem, the subroutine should save the MC9S12 registers before
it uses them, and restore the MC9S12 registers after it is done with them.

 EE 308 Spring 2011

 EE 308 Spring 2011

Example of a subroutine to delay for a certain amount of time

; Subroutine to wait for 100 ms

delay: ldaa #100 ; execute outer loop 100 times
loop2: ldx #8000 ; want inner loop to last 1ms

loop1: dbne x,loop1 ; inner loop – 3 cycles x 8000 times

 dbne a,loop2
 rts

• Want inner loop to last for 1 ms. MC9S12 runs at 24,000,000 cycles/second, so 1 ms
is 24,000 cycles.

• Inner loop should be 24,000 cycles/ (3 cycles/loop) = 8,000 loops (times)

• Problem: The subroutine changes the values of registers A and X

• To solve this problem, save the values of A and X on the stack before using them, and
restore them before returning.

; Subroutine to wait for 100 ms

delay: psha ; save registers
 pshx

 ldaa #100 ; execute outer loop 100 times
loop2: ldx #8000 ; want inner loop to last 1ms

loop1: dbne x,loop1 ; inner loop – 3 cycles x 8000 times

 dbne a,loop2
 pulx ; restore registers
 pula
 rts

