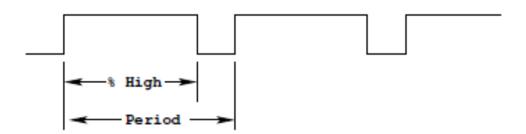


• The MC9S12 Pulse Width Modulation System

- Registers used by the PWM system
- How to set the period for PWM Channel 0
- How to set the clock source PWM Channel 0
- Independence of clocks for Channels 1 and 0
- PWM Channels 2 and 3
- Using the MC9S12 PWM
- o A program to use the MC9S12 PWM


Pulse Width Modulation on the MC9S12

- Because PWM is used so often the MC9S12 has a built-in PWM system
- •The MC9S12 PWM does not use interrupts
- The PWM system on the MC9S12 is very flexible
 - It allows you to set a wide range of PWM frequencies
 - It allows you to generate up to 8 separate PWM signals, each with a different frequency
 - It allows you to generate eight 8-bit PWM signals (with 0.5% accuracy) or four 16-bit PWM signals (with 0.002% accuracy)
 - It allows you to select high polarity or low polarity for the PWM signal
 - It allows you to use left-aligned or center-aligned PWM signals
- Because the MC9S12 PWM systems is so flexible, it is fairly complicated to program.
- To simplify the discussion we will only discuss 8-bit, left-aligned, high-polarity PWM signals.

• Full information about the MC9S12 PWM subsystem can be found in Pulse Width Modulation Block Users Guide

Pulse Width Modulation

Need a way to set the PWM period and duty cycle

The MC9S12 sets the PWM period by counting from 0 to some maximum count with a special PWM clock

PWM Period = PWM Clock Period x Max Count

Once the PWM period is selected, the PWM duty cycle is set by telling the HC12 how many counts it should keep the signal high for

PWM Duty Cycle = Count High/Max Count

The hard part about PWM on the MC9S12 is figuring out how to set the PWM Period

The MC9S12 Pulse Width Modulation System

- The PWM outputs are on pins 0 through 7 of Port P
 - On the Dragon12-Plus board, pins 0 through 3 of Port P control the seven-segment LEDs.
 - If you want to use the seven-segment LEDs in addition to PWM, you will need to use PWM channels 4 through 7
- There are 33 registers used by the PWM subsystem
- You don't need to work with all 33 registers to activate PWM
- To select 8-bit mode, write a 0 to Bits 7, 6, 5 and 4 of PWMCTL register.
- To select left-aligned mode, write 0x00 to PWMCAE.
- To select high polarity mode, write a 0xFF to PWMPOL register.

- To set the period for a PWM channel you need to program bits in the following PWM registers:
- For Channel 0 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER0
- For Channel 1 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER1
- For Channel 2 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER2
- For Channel 3 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER3
- For Channel 4 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER4
- For Channel 5 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER5
- For Channel 6 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER6
- For Channel 7 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER7
- To set the duty cycle for a PWM channel you need to write to the PWDTYn register for Channel n.
- To enable the PWM output on one of the pins of Port P, write a 1 to the appropriate bit of PWME

PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0	0x00A0	PWME
-------	-------	-------	-------	-------	-------	-------	-------	--------	------

Set PWMEn = 1 to enable PWM on Channel n
If PWMEn = 0, Port P bit n can be used for general purpose I/O


PPOL7	PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0	0x00A1	PWMPCL
-------	-------	-------	-------	-------	-------	-------	-------	--------	--------

PPOLn – Choose polarity $1 \Rightarrow$ high polarity $0 \Rightarrow$ low polarity

We will use high polarity only. PWMPOL = 0xFF;

With high polarity, duty cycle is amount of time output is high

PCLKn - Choose clock source for Channel n

CH5, CH4, CH1, CH0 can use either A (0) or SA (1) CH7, CH6, CH3, CH2 can use either B (0) or SB (1)

$$SB = \frac{B}{2 \times PWMSCLB} \qquad SA = \frac{A}{2 \times PWMSCLA}$$

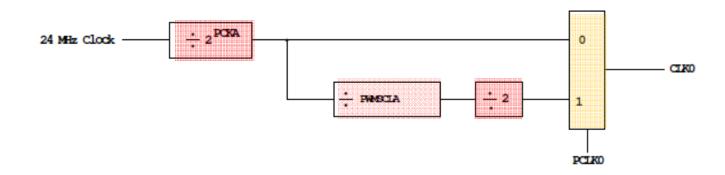
	0	PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0	0x00A3	PWMPRCLK
ı										

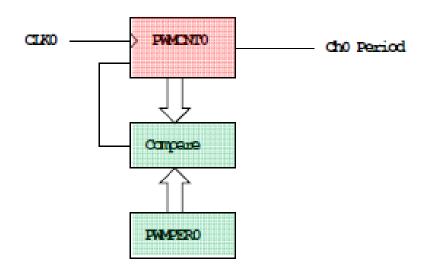
This register selects the prescale clock source for clocks A and B independently

PCKA[2–0] – Prescaler for Clock A
$$A = 24 \text{ MHz} / 2^{(\text{PCKA}[2-0])}$$

PCKB[2–0] – Prescaler for Clock B
$$B = 24 \text{ MHz} / 2^{(\text{PCKB}[2-0])}$$

CAE7	CAE6	CAE5	CAE4	CAE3	CAE2	CAEL	CAEO	0x00A4	PWMCAE
------	------	------	------	------	------	------	------	--------	--------


Select center aligned outputs (1) or left aligned outputs (0)


Choose PWMCAE = 0x00 to choose left aligned mode

Clock Select for PWM Channel 0

You need to set PCKA, PWSCALA, PCLK0, and PWPER0

PWMCNT0 counts from **0** to **PWMPER0 – 1**

It takes PWMPER0 periods of CLK0 to make one Ch0 period

Ch0 Period = PWMPER0 x CLK0 Period

=
$$\begin{cases} PWMPER0 \times (2^{PCKA}) & (PCLK0 = 0) \\ PWMPER0 \times (2^{PCKA+1}) \times PWMSCLA (PCLK0 = 1) \end{cases}$$

How to set the Period for PWM Channel 0

- To set the period for PWM Channel 0:
 - Set the PWM Period register for Channel 0, **PWMPER0**
 - CLK0, the clock for Channel 0, drives a counter (PWCNT0)
 - PWCNT0 counts from 0 to PWMPER0 1
 - The period for PWM Channel 0 is PWMPER0 × Period of CLK0
- There are two modes for the clock for PWM Channel 0
 - You select the mode by the **PCLK0** bit:
 - If PCLK0 == 0, CLK0 is generated by dividing the 24 MHz clock by 2^{PCKA} , where PCKA is between 0 and 7
 - If PCLK0 == 1, CLK0 is generated by dividing the 24 MHz clock by $2^{PCKA+1} \times PWSCLA$, where PCKA is between 0 and 7 and PWSCALA is between 0 and 255 (a value of 0 gives a divider of 256)
- The Period for PWM Channel 0 (in number of 41.67 ns cycles) is calculated by

$$Period = \begin{cases} PWMPER0 \times 2^{PCKA} & \textbf{if PCLK0} == \mathbf{0} \\ PWMPER0 \times 2^{PCKA+1} \times PWMSCLA & \textbf{if PCLK0} == \mathbf{1} \end{cases}$$

- With PCLK0 == 0, the maximum possible PWM period is 1.36 ms
- With PCLK0 == 1, the maximum possible PWM period is 0.695 s
- To get a 0.5 ms PWM period, you need 12,000 cycles of the 24 MHz clock.

$$12,000 = \begin{cases} PWMPER0 \times 2^{PCKA} & \text{if } PCLK0 == 0 \\ PWMPER0 \times 2^{PCKA+1} \times PWMSCLA & \text{if } PCLK0 == 1 \end{cases}$$

• You can do this in many ways

- With PCLK0 = 0, can have

PCKA	PWMPER0	Precision
6	187	Approx.
7	94	Approx.

- With PCLK0 = 1, can have

PCKA	PWMSCLA	PWMPER0	Precision
0	24	250	Exact
0	25	240	Exact
0	30	200	Exact
1	12	250	Exact
1	15	200	Exact
2	6	250	Exact
2	10	150	Exact

and many other combinations

- You want PWMPER0 to be large (say, 100 or larger)
 - If PWMPER0 is small, you don't have much control over the duty cycle
 - For example, if PWMPER0 = 4, you can only have 0%, 25%, 50%, 75% or 100% duty cycles
- Once you choose a way to set the PWM period, you can program the PWM registers
- For example, to get a 0.5 ms period, let's use PCLK0 = 1, PCKA = 0, PWMSCLA = 30, and PWMPER0 = 200
- We need to do the following:
 - Write 0x00 to PWMCTL (to set up 8-bit mode)
 - Write 0xFF to PWMPOL (to select high polarity mode) Do not Change
 - Write 0x00 to PWMCAE (to select left aligned mode)
 - Write 0 to Bits 2,1,0 of PWMPRCLK (to set PCKA to 0)
 - Write 1 to Bit 0 of PWMCLK (to set PCLK0 = 1)
 - Write 30 to PWMSCLA
 - Write 200 to PWMPER0
 - Write 1 to Bit 0 of PWME (to enable PWM on Channel 0)
 - Write the appropriate value to PWDTY0 to get the desired duty cycle (e.g., PWMDTY0 = 120 will give 60% duty cycle)

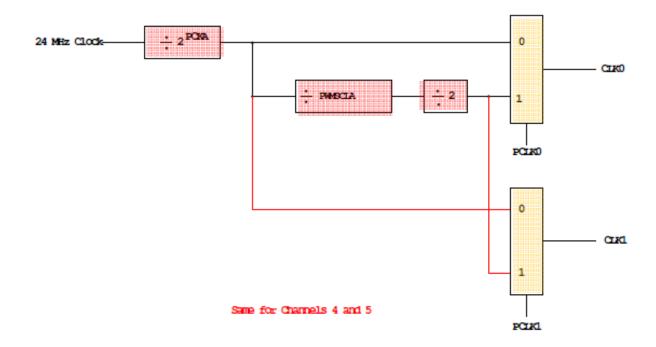
C code to set up PWM Channel 0 for 0.5 ms period (2 kHz frequency) PWM with 60% duty cycle

```
PWMCTL = 0x00; /* 8-bit Mode */
PWMPOL = 0xFF; /* High polarity mode */
PWMCAE = 0x00; /* Left-Aligned */
```

```
PWMPRCLK = PWMPRCLK & \sim 0x07; /* PCKA = 0 */
PWMCLK = PWMCLK | 0x01; /* PCLK0 = 1 */
```

PWMSCLA = 30; PWMPER0 = 200;

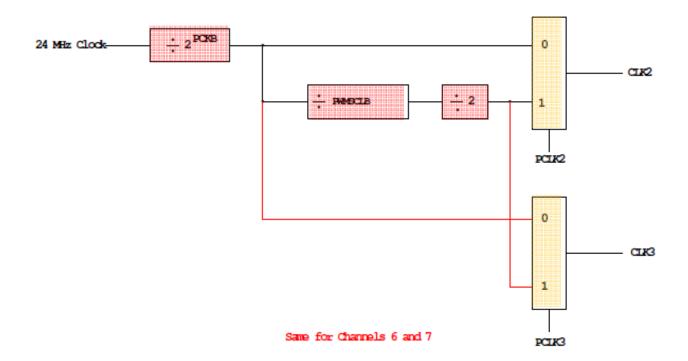
PWME = PWME | 0x01; /* Enable PWM Channel 0 */


PWMDTY0 = 120; /* 60% duty cycle on Channel 0 */

Interdependence of clocks for Channels 0, 1, 4 and 5

- The clocks for Channels 0, 1, 4 and 5 are interdependent
- They all use PCKA and PWMSCLA
- To set the clock for Channel n, you need to set PCKA, PCKn, PWMSCLA (if PCLKn == 1) and PWMPERn where n = 0, 1, 4 or 5

Clock Select for PWM Channels 0 and 1



PWM Channels 2, 3, 6 and 7

- PWM channels 2, 3, 6 and 7 are similar to PWM channels 0, 1, 4 and 5
- To set the clock for Channel n, you need to set PCKB, PCLKn, PWMSCLB (if PCLKn == 1) and PWMPERn where n = 2, 3, 6 or 7

Clock Select for PWM Channels 2 and 3

Using the HCS12 PWM

- 1. Choose 8-bit mode (PWMCTL = 0x00)
- 2. Choose high polarity (PWMPOL = 0xFF)
- 3. Choose left-aligned (PWMCAE = 0x00)
- 4. Select clock mode in PWMCLK:
 - PCLKn = 0 for 2^N , • PCLKn = 1 for $2^{(N+1)} \times M$,
- 5. Select N in PWMPRCLK register:
 - **PCKA** for channels **5**, **4**, **1**, **0**;
 - PCKB for channels 7, 6, 3, 2.
- 6. If PCLKn = 1, select M
 - PWMSCLA = M for channels 5, 4, 1, 0
 - PWMSCLB = M for channels 7, 6, 3, 2.
- 7. Select PWMPERn, normally between 100 and 255.
- 8. Enable desired PWM channels: PWME.

9. Select PWMDTYn, normally between 0 and PWMPERn. Then

Duty Cycle n = $(PWMDTYn / PWMPERn) \times 100\%$

Change duty cycle to control speed of motor or intensity of light, etc.

10. For 0% duty cycle, choose PWMDTYn = 0x00.

Program to use the MC9S12 PWM System

```
/*
Program to generate 15.6 kHz pulse width modulation
on Port P Bits 0 and 1
To get 15.6 \text{ kHz}: 24,000,000/15,600 = 1538.5
Cannot get exactly 1538.5
Use 1536, which is 2^9 x 3
Lots of ways to set up PWM to achieve this. One way is 2<sup>3</sup> x 192
Set PCKA to 3, do not use PWMSCLA, set PWMPER to 192
*/
                          /* common defines and macros */
#include <hidef.h>
#include "derivative.h"
                          /* derivative-specific definitions */
void main(void)
     /* Choose 8-bit mode */
     PWMCTL = 0x00;
     /* Choose left-aligned */
     PWMCAE = 0x00;
     /* Choose high polarity on all channels */
     PWMPOL = 0xFF;
```



```
/* Select clock mode 0 for Channels 1 and 0 */
    /* (no PWMSCLA) */
    PWMCLK = PWMCLK & \sim 0 \times 03;
    /* Select PCKA = 3 for Channels 1 and 0 */
    PWMPRCLK = (PWMPRCLK & \sim 0x4) | 0x03;
    /* Select period of 192 for Channels 1 and 0 */
    PWMPER1 = 192;
    PWMPER0 = 192;
    /* Enable PWM on Channels 1 and 0 */
    PWME = PWME \mid 0x03;
    PWMDTY1 = 96;
                         /* 50% duty cycle on Channel 1 */
    PWMDTY0 = 46; /* 25\% duty cycle on Channel 0 */
    while (1)
          /* Code to adjust duty cycle to meet requirements */
}
```