

Course Overview

URL: <u>http://www.ee.nmt.edu/~erives/classes.php</u>

Texts:

- Class Notes
- Freescale Databooks on the MC9S12
- The HCS12/9S12: An Introduction to Software and Interfacing, 2nd Edition by Han-Way Huang

Grading:

- 20%: Homework (late homework will have a 30% penalty)
- 10%: Quizzes (every Friday)
- 50%: Three midterms exams
- 20%: Final exam

EE 308 Spring 2013

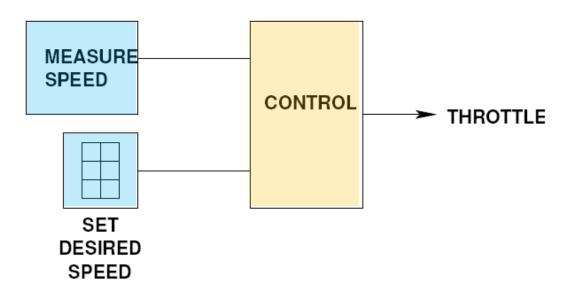
- Introduction to the MC9S12 Microcontroller
- Binary and Hexadecimal Numbers
- Assembly Language Programming
- C Language Programming
- Introduction to MC9S12 Internal Peripherals
 - The MC9S12 Timer Subsystem
 - Interrupts using the Timer Subsystem
 - The MC9S12 Pulse Width Modulator Subsystem
- The MC9S12 Expanded Mode
 - Address and Data Buses and Timing
 - Adding Memory and External Peripherals
 - Interfacing to the MC9S12
- More MC9S12 Internal Peripherals
 - The A/D Converter Subsystem
 - The Serial Peripheral Interface
 - The Serial Communications Interface
- Using the MC9S12 in a Control Application

Lab Overview

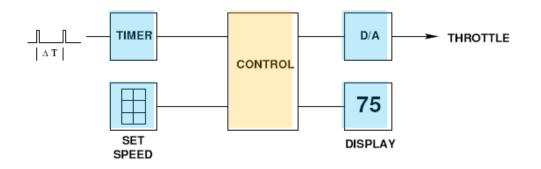
• The lab meets Monday and Wednesday afternoons. **No labs this week**.

- Lab handouts will be posted starting the following week.
- The 9S12 evaluation kits will be passed out in lab next week.
- You need to bring a bound lab notebook to the first lab.

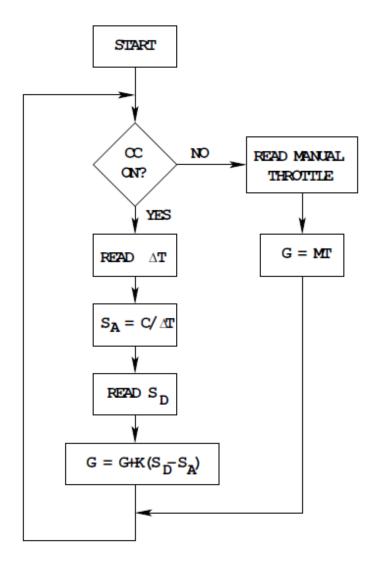
• There will be a prelab for each lab. This must be done and turned in at the start of your lab section. The lab TA will verify that you have completed the prelab.


• Be prepared to answer questions about the pre-lab when you come to lab.

• If you do not complete the prelab before coming to lab, you will lose 50% of the points for that lab.

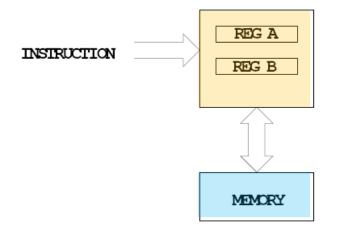

- Introduction to Microprocessors and Microcontrollers.
 - Course Overview
 - o Cruise Control Block Diagrams and Flowchart
 - Block Diagrams of Simple Microprocessor and Microcontroller
 - Harvard architecture and Princeton architecture microprocessor block diagrams
 - Memory map for a Princeton architecture microprocessor

AUTOMOBILE CRUISE CONTROL

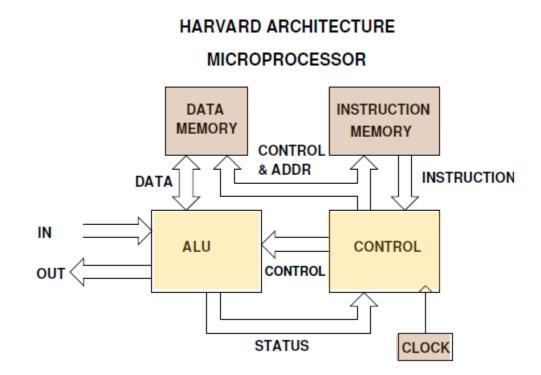


AUTOMOBILE CRUISE CONTROL

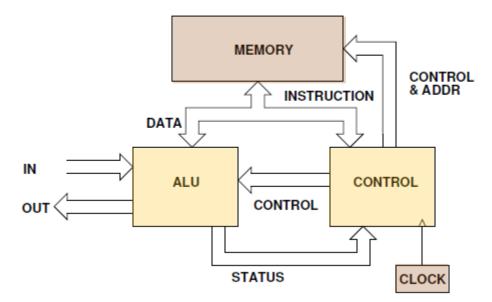

 ΔT = time for one revolution of wheel. **Speed** = C/ ΔT , where C is the circumference of the wheel

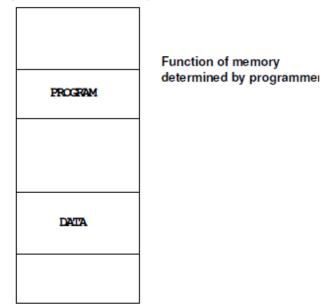


MICROCONTROLLER

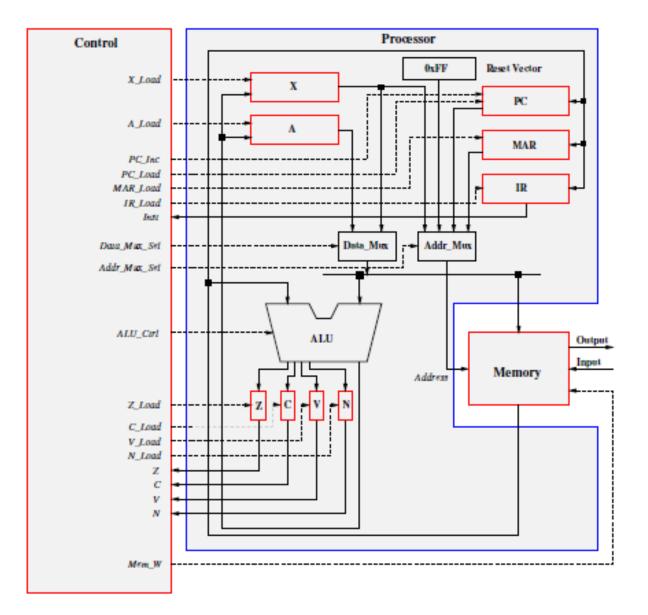


SIMPLE MICROPROCESSOR


INSTRUCTION	ACTION	
18 06	$(A) + (B) \Longrightarrow A$	
87	$0 \Rightarrow A$	
5A 05	$(A) \Rightarrow Address 5$	


PRINCETON (VON NEUMAN) ARCHITECTURE

MICROPROCESSOR



MEMORY MAP

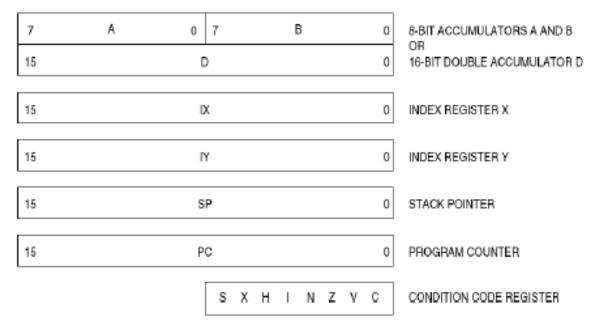

(Princeton Architecture)

Figure 2-1. Programming Model

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
•••	•••	•••
1010	A	10
1011	В	11
1100	С	12
1101	D	13
1110	Е	14
1111	F	15

Convert Binary to Decimal

1111011 $_{2}$ 1 x 2⁶ + 1 x 2 ⁵ + 1 x 2 ⁴ + 1 x 2 ³ + 0 x 2 ² + 1 x 2 ¹ + 1 x 2 ⁰ 1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1 123 $_{10}$

Convert Hex to Decimal

82D6 ₁₆ 8 x 16³ + 2 x 16² + 13 x 16¹ + 6 x 16⁰ 8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1 33494₁₀