
EE 308 Spring 2014

• Comparison of C and Assembly
• How to compile a C program using CodeWarrior

o Using pointers to access contents of specific addresses
in C

o Including and using “derivative.h” to use in MC9S12
port names

o Software delays in C
o Setting and clearing bits in C
o Program to display a pattern on Dragon12 LEDs

EE 308 Spring 2014

A simple C program and how to compile it

Here is a simple C program

#define COUNT 5

unsigned int i;

main()
{

i = COUNT;
_ _asm(swi);

}

1. Start CodeWarrior and create a new project.

2. On the Project Parameters menu, leave the C box checked,
give the project a name, and Set an appropriate directory.

3. On the C/C++ Options menu, select ANSI startup code, Small
memory model, and None for floating point format. Then select
Finish. This will open a new project for a C program.

4. Select Edit – Standard Settings. Select Target – Compiler for
HC12, then click on Options. Click on the Output tab, and select
the Generate Listing File option. Click OK, then OK.

5. C does not use an org statement to tell the compiler where to put
code or data. CodeWarrior uses a linker file called Project.prm.
You will have to edit this file to the compiler where to put your
program and data. CodeWarrior has been set up to put your

EE 308 Spring 2014

program into Flash EEPROM starting at address 0xC000. In this
class, you will put your program into RAM starting at address
0x2000, or into EEPROM starting at address 0x0400. In the
window which lists the project files, select Project Settings –
Linker Files – Project.prm. Find the following line:

RAM = READ_WRITE 0x1000 TO 0x3FFF;

and change it to this:

RAM = READ_WRITE 0x1000 TO 0x1FFF;
PROG = READ_ONLY 0x2000 TO 0x3FFF;

Next, find the line

INTO ROM_C000 /*, ROM_4000*/;

and change it to

INTO PROG /*, ROM_4000*/;

Save and close Project.prm.

6. In the window which lists the project files, double-click on
main.c. Modify the file to look like this:

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

void main(void) {

}

EE 308 Spring 2014

7. Enter your C program.

8. Select Project – Make. This will create a Project.abs.s19 file
and a listing file main.lst in the bin directory. You will need to
delete the first line (which starts with S0) from the Project.abs.s19
file.

9. If all went well, you should be able to download the
Project.abs.sa9 file into the MC9S12.

In the bin directory there will be several files with the .lst
extension. The file Start12.lst contains C startup code. The file
main.lst shows the assembly language which was produced by the
C compiler.

The Start12.lst is fairly long, and it contains uncompiled code for a
lot of things we do not use. Here are the portions of Start12.lst
which we use. It just loads the stack pointer, initializes any needed
global data, zeros out the rest of the global data, and calls the
main.c code.

131: static void Init(void)
134: /* purpose: 1) zero out RAM-areas where data is allocated */
135: /* 2) copy initialization data from ROM to RAM */
136: /* 3) call global constructors in C++ */
139: ZeroOut:
0000 fe0000 [3] LDX _startupData:2
0003 fd0000 [3] LDY _startupData
0006 270e [3/1] BEQ CopyDown ;abs = 0016
148: NextZeroOut:
0008 35 [2] PSHY
000b ec31 [3] LDD 2,X+

EE 308 Spring 2014

185: NextWord:
000d 6970 [2] CLR 1,Y+
000f 0434fb [3] DBNE D,NextWord ;abs = 000d
0012 31 [3] PULY
0013 03 [1] DEY
0014 26f2 [3/1] BNE NextZeroOut ;abs = 0008
206: CopyDown:
0016 fe0000 [3] LDX _startupData:4
216: NextBlock:
0019 ec31 [3] LDD 2,X+
001b 270b [3/1] BEQ funcInits ;abs = 0028
257: Copy:
001f 180a3070 [5] MOVB 1,X+,1,Y+
0023 0434f9 [3] DBNE D,Copy ;abs = 001f
0026 20f1 [3] BRA NextBlock ;abs = 0019
271: funcInits: ; call of global construtors is only in
0028 3d [5] RTS

Function: _Startup

399: /* purpose: 1) initialize the stack
400: 2) initialize the RAM, copy down init data etc (Init)
401: 3) call main;
405:
406: /* initialize the stack pointer */
0000 cf0000 [2] LDS #__SEG_END_SSTACK
460: Init(); /* zero out, copy down, call constructors */
0003 0700 [4] BSR Init
469: main();
0005 060000 [3] JMP main
470: }

EE 308 Spring 2014

Here is the main.lst file.

*** EVALUATION ***
ANSI-C/cC++ Compiler for HC12 V-5.0.41 Build 10203, Jul 23 2010

1: #include <hidef.h> /* common defines and macros */
2: #include "derivative.h" /* derivative-specific definitions */
3: #define COUNT 5
4:
5: unsigned int i;
6:
7: void main(void) {
8:
9: i = COUNT;

0000 c605 [1] LDAB #5
0002 87 [1] CLRA
0003 7c0000 [3] STD i

10: _ _asm(swi);
0006 3f

11: }
0007 3d [5] RTS

EE 308 Spring 2014

The file Project.map shows where various things will be put in
memory. It is fairly long. Here are the relevant parts:

STARTUP SECTION
--
Entry point: 0x2029 (_Startup)

SECTION-ALLOCATION SECTION
Section Name Size Type From To Segment
--
.init 49 R 0x2000 0x2030 PROG
.startData 10 R 0x2031 0x203A PROG
.text 7 R 0x203B 0x2041 PROG
.copy 2 R 0x2042 0x2043 PROG
.stack 256 R/W 0x1000 0x10FF RAM
MODULE: -- main.c.o --
- PROCEDURES:

main 203B 7 7 1 .text
- VARIABLES:

i 1100 2 2 1 .common
MODULE: -- Start12.c.o --
- PROCEDURES:

Init 2000 29 41 1 .init
_Startup 2029 8 8 0 .init

- VARIABLES:
_startupData 2031 6 6 3 .startData

- LABELS:
__SEG_END_SSTACK 1100 0 0 1

This shows that the total program occupies addresses from 0x2000
to 0x2043. The stack occupies addresses from 0x1000 to 0x10FF.
Our variable i is located at address 0x1100. The entry point to the
program is at 0x2029.

EE 308 Spring 2014

 This means that, to run the program, you need to tell DBug-12 to
run the program from 0x2029, not from 0x2000:

g 2029

Pointers in C

• To access a memory location:

*address

• You need to tell compiler whether you want to access 8-bit or 16
bit number, signed or unsigned:

*(type *) address

– To read an eight-bit unsigned number from memory location
0x2000:

x = *(unsigned char *) 0x1000;

– To write a 0xaa55 to a sixteen-bit signed number at memory
locations 0x1010 and 0x1011:

*(signed int *) 0x1010 = 0xaa55;

• If there is an address which is used a lot:

#define PORTB (* (unsigned char *) 0x0001)
x = PORTB; /* Read from address 0x0001 */

EE 308 Spring 2014

PORTB = 0x55; /* Write to address 0x0001 */

• To access consecutive locations in memory, use a variable as a
pointer:

unsigned char *ptr;

ptr = (unsigned char *)0x1000;
ptr = 0xaa; / Put 0xaa into address 0x1000 */
ptr = ptr+2; /* Point two further into table */
x = *ptr; /* Read from address 0x1002 */

• To set aside ten locations for a table:

unsigned char table[10];

• Can access the third element in the table as:

table[2]

or as

*(table+2)

• To set up a table of constant data:

const unsigned char table[] = {0x00,0x01,0x03,0x07,0x0f};

This will tell the compiler to place the table of constant data with
the program (which might be placed in EEPROM) instead of with
regular data (which must be placed in RAM).

EE 308 Spring 2014

• There are a lot of registers (such as PORTA and DDRA) which
you will use when programming in C. CodeWarrior includes the
header mc9s12dp256.h which has all the registers predefined

Setting and Clearing Bits in C

• You often need to set or clear bits of a hardware register.

– The easiest way to set bits in C is to use the bitwise OR (|)
operator:

DDRB = DDRB | 0x0F; /* Make 4 LSB of Port B outputs */

– The easiest way to clear bits in C is to use the bitwise AND
(&) operator:

DDRP = DDRP & ~0xF0; /* Make 4 MSB of Port P inputs */

EE 308 Spring 2014

A software delay

• To enter a software delay, put in a nested loop, just like in
assembly.

– Write a function delay(num) which will delay for num
milliseconds

void delay(unsigned short num)
{

volatile unsigned short i; /* volatile so compiler*/
/* does not optimize */

while (num > 0){

i = xxxx;
/* ------------------------------- */

while (i > 0){ /* Want inner loop to delay */
i = i - 1; /* for 1ms */

} /*-------------------------------- */
num = num - 1;

}
}

• What should xxxx be to make a 1 ms delay?

EE 308 Spring 2014

• Look at assembly listing generated by compiler:

19: void delay(unsigned short num)
20: {
0000 6cac [2] STD 4,-SP
21: volatile unsigned short i;
22:
23: while (num > 0)
0002 2015 [3] BRA *+23 ;abs = 0019

 24: {
 25: i = D_1MS;

 0004 cc0736 [2] LDD #XXXX
 0007 6c82 [2] STD 2,SP
 26: while (i > 0)
 0009 2005 [3] BRA *+7 ;abs = 0010
 27: {
 Inner 28: i = i - 1;

outer loop 000b ee82 [3] LDX 2,SP
loop takes 000d 09 [1] DEX

 12 cycles 000e 6e82 [2] STX 2,SP
 0010 ec82 [3] LDD 2,SP
 0012 26f7 [3/1] BNE *-7 ;abs = 000b
 29: }
 30: num = num - 1;
 0014 ee80 [3] LDX 0,SP

 0016 09 [1] DEX
 0017 6e80 [2] STX 0,SP

 0019 ec80 [3] LDD 0,SP
 001b 26e7 [3/1] BNE *-23 ;abs = 0004

 31: }
 32: }
 001d 1b84 [2] LEAS 4,SP

001f 3d [5] RTS

EE 308 Spring 2014

• Inner loop takes 12 cycles.

• One millisecond takes 24,000 cycles
(24,000,000 cycles/sec × 1 millisecond = 24,000 cycles)

• Need to execute inner loop 24,000/12 = 2,000 times to delay for 1
millisecond

void delay(unsigned short num)
{

volatile unsigned short i; /* volatile so compiler */
/* does not optimize */

while (num > 0)
{

i = 2000;
/* -------------------------------- */

while (i > 0) /* */
{ /* Inner loop takes 12 cycles */

i = i - 1; /* Execute 2000 times to */
} /* delay for 1 ms */

/* -------------------------------- */
num = num - 1;

}
}

EE 308 Spring 2014

Program to increment LEDs connected to PORTB, and delay
for 50 ms between changes

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#define D_1MS (24000/12) // Inner loop takes 12 cycles

// Need 24,000 cycles for 1 ms

void delay(unsigned short num);
main()
{

DDRB = 0xff; / * Make PORTB output */
PORTB = 0; /* Start with all off */
while(1) {

PORTB = PORTB + 1;
delay(50);

}
}

void delay(unsigned short num)
{

volatile unsigned short i; /* volatile so compiler /*
/* does not optimize */

while (num > 0) {
i = D_1MS;
while (i > 0) {

i = i - 1;
}
num = num - 1;

}
}

EE 308 Spring 2014

Program to display a particular pattern of lights on PORTB

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#define D_1MS (24000/12) // Inner loop takes 12 cycles

// Need 24,000 cycles for 1 ms
void delay(unsigned short num);
main()
{

const char table[] = {0x80,0x40,0x20,0x10,
0x08,0x04,0x02,0x01};

int i;
DDRB = 0xff; /* Make PORTB output */
PORTB = 0; /* Start with all off */
i = 0;
while(1)
{

PORTB = table[i];
delay(100);
i = i + 1;
if (i >= sizeof(table)) i = 0; /* Start over when */

/* end is reached */
}

}

EE 308 Spring 2014

Operators in C

Operator | Action | example

| | Bitwise OR %00001010 | %01011111 = % 01011111
& | Bitwise AND %00001010 & %01011111 = % 00001010
^ | Bitwise XOR %00001010 ^ %01011111 = % 01010101
~ | Bitwise COMP ~%00000101 = %11111010
% | Modulo 10 % 8 = 2

|
|| | Logical OR %00000000 || %00100000 = 1
&& | Logical AND %11000000 && %00000011 = 1

 %11000000 && %00000000 = 0

Setting and Clearing Bits in C

Assembly | C | action

bset DDRB,$0F | DDRB = DDRB | 0x0f; | Set 4 LSB of DDRB
bclr DDRB,$F0 | DDRB = DDRB & ~0xf0; | Clear 4 MSB of DDRB

 | |
l1: brset PTB,$01,l1 | while ((PTB & 0x01) == 0x01) | Wait until bit clear

 | |
l2: brclr PTB,$02,l2 | while ((PTB & 0x02) == 0x00) | Wait until bit set

EE 308 Spring 2014

Pointers in C

To read a byte from memory location 0xE000:

var = *(char *) 0xE000;

To write a 16-bit word to memory location 0xE002:

*(int *) 0xE002 = var;

EE 308 Spring 2014

Program to count the number of negative numbers in an array
in memory

/* Program to count the number of negative numbers in memory *
 Start at 0xE000, go through 0xEFFF
 Treat the numbers as 8-bit
*/
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

unsigned short num_neg; /* Make num_neg global so we can */
/* find it in memory use type int so */
/* can hold value larger than 256 */
/* Unsigned because number cannot */
/* be negative */

main()
{

char *ptr,*start,*end;

start = *(char *) 0xE000; /* Address of first element */
end = *(char *) 0xEFFF; /* Address of last element */

num_neg = 0;

for (ptr = start; ptr <= end; ptr = ptr+1)
{

if (*ptr < 0) num_neg = num_neg + 1;
}
_ _asm(swi); /* Exit to DBug-12 */

}

