
EE 308 Spring 2014

• The MC9S12 A/D Converter
o Introduction to A/D Converters
o Single Channel vs Multiple Channels
o Singe Conversion vs Multiple Conversions
o MC9S12 A/C Registers
o Using the MC9S12 A/D Converter
o A C program to use the MC9S12 A/D Converter

EE 308 Spring 2014

Analog to Digital Converters (A/D)

• An Analog-to-Digital (A/D) converter converts an analog voltage
into a digital number

• There are a wide variety of methods used for A/D converters
Examples are:

– Flash (Parallel)
– Successive Approximation
– Sigma-Delta
– Dual Slope Converter

• A/D converters are classified according to several characteristics

– Resolution (number of bits) — typically 8 bits to 24 bits
– Speed (number of samples per second) — several
samples/sec to several billion samples/sec
– Accuracy — how much error there is in the conversion.

• High-resolution converters are usually slower than low-resolution
converters

• The MC9S12 has two 10-bit successive approximation A/D
converters (which can be used in 8-bit mode)

• The MC9S12 uses an analog multiplexer to allow eight input pins
to connect to any of the A/D converters.

EE 308 Spring 2014

A/D Sampling Rate

• The rate at which you sample a signal depends on how rapidly
the signal is changing

 • If you sample a signal too slowly, the information about the signal
 may be inaccurate.

• A 1,050 Hz signal sampled at 500 Hz looks like a 50 Hz signal

• To get full information about a signal you must sample more than
twice the highest frequency in the signal. (Nyquist theorem).

• Practical systems typically use a sampling rate of at least four
times the highest frequency in the signal.

EE 308 Spring 2014

Successive Approximation A/D Converter

• A successive approximation (SA) A/D converter uses an
intelligent scheme to determine the input voltage

• It first tries a voltage half way between VRH and VRL

• It determines if the signal is in the lower half or the upper half
of the voltage range

 – If the input is in the upper half of the range, it sets the most
significant bit of the output

 – If the input is in the lower half of the range, it clears the
most significant bit of the output

• The first clock cycle eliminates half of the possible values

• On the next clock cycle, the SA A/D tries a voltage in the middle
of the remaining possible values

• The second clock cycle allows the SA A/D converter to
determine the second most significant bit of the result

• Each successive clock cycle reduces the range another factor of
two

• For a B-bit SA A/D converter, it takes B clock cycles to
determine the value of the input voltage

EE 308 Spring 2014

EE 308 Spring 2014

Successive Approximation A/D Converter

• An SA A/D converter can give the wrong output if the voltage
changes during a conversion

• An SA A/D converter needs an input buffer which holds the
input voltage constant during the conversion

• This input buffer is called a Track/Hold or Sample/Hold circuit

• It usually works by charging a capacitor to the input voltage, then
disconnecting the capacitor from the input voltage during
conversion

• The voltage on the capacitor remains constant during conversion

• The HC12 has a Track/Hold amplifier built in

• SA A/D converters have resolutions of up to 16 bits

• SA A/D converters have speeds up to several million samples per
second

EE 308 Spring 2014

EE 308 Spring 2014

MC9S12 Analog/Digital Converter

• A 10-bit A/D converter is used to convert an input voltage. The
reference voltages are VRL = 0V and VRH = 5V.

– What is the quantization level of the A/D converter?

 ΔV = (VRH − VRL)/(2b -1) = 4.88 mV

• If the value read from the A/D converter is 0x15A, what is the
input voltage?

Vin = VRL + [(VRH − VRL)/(2b-1)]*ADvalue = 0 V + 4.88 mV
× 346 = 1.6894 V

• The MC9S12 has two 10-bit A/D converters (ATD0 and ATD1).

-Each A/D converter has an 8-channel analog mulitplexer in
front of it, so each channel can convert 8 analog inputs (but
not at exactly the same time).

• ATD0 uses the eight bits of Port AD0, called PAD00 through
PAD07

- PAD00 and PAD01 of ATD0 are used by DBug-12 at
startup to determine whether to execute DBug-12, or to
run code from EEPROM of the bootloader.

• ATD1 uses the eight bits of Port AD1, called PAD08 through
PAD15

EE 308 Spring 2014

EE 308 Spring 2014

The MC9S12 Analog/Digital Converter

• We will discuss only ATD0. ATD1 is identical.

• ATD0 is an eight-channel 10-bit A/D converter.

– The A/D converter can also be used in 8-bit mode.

• There are eight inputs to the A/D converter.

• The inputs are fed through a multiplexer to the single A/D
converter.

• There are inputs on the HCS12 for the reference voltages VRL and
VRH

– In normal operation VRL = 0 V and VRH = 5 V.

– You must have VSS ≤ VRL < VRH ≤ VDD.

– The accuracy of the A/D converter is guaranteed only for
VRH − VRL =5 V.

• When using the A/D converter, you can choose between
performing single or continuous conversion on a single channel, or
multiple channels.

• The AD conversion results are stored in the registers ATD0DR0
through ATD0DR7

– You can choose whether to have the results left-
justified or right justified.

EE 308 Spring 2014

• To program the HCS12 A/D converter you need to set up the A/D
control registers ATD0CTL2, ATD0CTL3, ATD0CTL4 and
ATD0CTL5.

• The registers ATD0CTL0 and ATD0CTL1 are used for factory
test, and not used in normal operation.

• When the AD converter is not used, Port AD0 can be used for a
general purpose input (not as a GPIO – General Purpose I/O like
the other ports).

- Register ATD0DIEN is used to set up Port AD0 pins for
use as a general purpose inputs.

- The values on the pins are read from PORTAD0.

EE 308 Spring 2014

EE 308 Spring 2014

To Use A/D Converter:

ADPU = 1 (Power up A/D)

SCAN = 0 => Single conversion sequence
SCAN = 1 => Convert continuously

S8C, S4C, S2C, S1C:
Number of conversions per sequence: 0001 −− 0111 (1 to 7)

 0000 or 1xxx (8)
SRES8 = 0 = > 10 Bit Mode
SRES8 = 1 => 8 Bit Mode

DJM = 0 => Left justified data in the result registers
DJM = 1 => Right justified data in the result registers

EE 308 Spring 2014

DSGN = 0 => Unsigned data in the result registers
DSGN = 1 => Signed data representation in the result registers
(only for left justified)

ATDCTL4= 0x85 => 2 MHz AD clock, 12 cycles per conversion,
8 bit mode
ATDCTL4= 0x05 => 2 MHz AD clock, 14 cycles per conversion,
10 bit mode

-Other values of ATDCTL4 will not work, or will result in
 slower operation of A/D

SCF Flag is set after a sequence of conversions is complete
-The SCF Flag is cleared when ATD0CTL5 is written, or by
writing a 1 to the SCF bit

After writing to ATD0CTL5, SCF flag cleared and conversions
start

EE 308 Spring 2014

Using the HCS12 A/D converter

1. Power up A/D Converter (ADPU = 1 in ATD0CTL2)

2. Select number of conversions per sequence (S8C S4C S2C S1C
in ATD0CTL3)

S8C S4C S2C S1C = 0001 to 0111 for 1 to 7 conversions
S8C S4C S2C S1C = 0000 or 1xxx for 8 conversions

3. Set up ATD0CTL4

• For 8-bit mode write 0x85 to ATD0CTL4
• For 10-bit mode write 0x05 to ATD0CTL4
• Other values of ATD0CTL4 either will not work or will
result in slower A/D conversion rates

4. Select DJM in ATD0CTL5

(a) DJM = 0 => Left justified data in the result registers
(b) DJM = 1 => Right justified data in the result registers

5. Select DSGN in ATD0CTL5

(a) DSGN = 0 => Unsigned data representation in the
result register

(b) DSGN = 1 => Signed data representation in the result
register

The Available Result Data Formats are shown in the following
table:

EE 308 Spring 2014

SRES8 DJM DSGN RESULT DATA FORMAT
1 0 0 8-bit/left justified/unsigned – Bits 15-8
1 0 1 8-bit/left justified/signed – Bits 15-8
1 1 X 8-bit/right justified/unsigned – Bits 7-0
0 0 0 10-bit/left justified/unsigned – Bits 15-6
0 0 1 10-bit/left justified/signed – Bits 15-6
0 1 X 10-bit/right justified/unsigned – Bits 9-0

6. Select MULT in ATD0CTL5:

• MULT = 0: Convert one channel the specified number of
 times

 – Choose channel to convert with CC, CB, CA of
ATD0CTL5.

• MULT = 1: Convert across several channels. CC, CB, CA
of ATD0CTL is the first channel to be converted.

7. Select SCAN in ATD0CTL5:

• SCAN = 0: Convert one sequence, then stop
• SCAN = 1: Convert continuously

8. After writing to ATD0CTL5, the A/D converter starts, and the
SCF bit is cleared. After a sequence of conversions is completed,
the SCF flag in ATD0STAT0 is set.

• You can read the results in ATD0DRxH.

EE 308 Spring 2014

9. If SCAN = 0, you need to write to ATD0CTL5 to start a new
sequence. If SCAN = 1, the conversions continue automatically,
and you can read new values in ATD0DRxH.

10. To get an interrupt after the sequence of conversions are
completed, set ASCIE bit of ATD0CTL2. After the sequence of
conversions, the ASCIF bit in ATD0CTL2 will be set, and an
interrupt will be generated.

11. With 24 MHz bus clock and ATD0CTL4 = 0x05, it takes 7 μs
to make one conversion, 56 μs to make eight conversions.

12. On MC9S12 EVBU, AD0 channels 0 and 1 are used to
determine start-up program (D-Bug12, EEPROM or bootloader).
Do not use AD0 channels 0 or 1, unless absolutely necessary (if
you need more than 14 A/D channels).

13.
ATD0DRx =(Vin − VRL)/(VRH − VRL) × 1024

Normally, VRL = 0 V, and VRH = 5 V, so

ATD0DRx =Vin/5 V × 1024

Example: ATD0DR0 = 448 => Vin = 2.19 V

14. To use 10-bit result, set ATD0CTL4 = 0x05 (Gives 2 MHz AD
clock with 24 MHz bus clock, 10-bit mode).

EE 308 Spring 2014

15. You can get more accuracy by averaging multiple conversions.
If you need only one channel, set MULT = 0, set S8C, S4C, S2C,
S1C, bits for eight conversions, then average all eight result
registers. The following assumes the data was right justified:

int avg;

avg = (ATD0DR0 + ATD0DR1
ATD0DR2 + ATD0DR3
ATD0DR4 + ATD0DR5
ATD0DR6 + ATD0DR7) >> 3;

EE 308 Spring 2014

/* Read temperature from PAD4. Turn on heater if temp too low,
 turn off heater if temp too high. Heater connected to Bit 0 of Port
A. */

#include "hcs12.h"
#define TRUE 1
#define SET_POINT 72 /* Temp at which to turn heater */

/* on or off */
main() {

ATD0CTL2 = 0x80; /* Power up A/D, no interrupts */
ATD0CTL3 = 0x00; /* Do eight conversions */
ATD0CTL4 = 0x85; /* 8-bit mode */
ATD0CTL5 = 0xA4; /* 1 0 1 0 0 1 0 0

 | | | | ___/
 | | | | |
 | | | | __ Bit 4 of Port AD
 | | | ____ MULT = 0 => one channel only
 | | ___ Scan = 1 => continuous conversion
 | _____DSGN = 0 => unsigned
 ______ DJM = 1 => right justified
 */

/***/

DDRA = 0xff; /* Make Port A output */
PORTA = 0x00; /* Turn off heater */

/***/
while (TRUE) {

if (ATD0DR0H > SET_POINT)
PORTA &= ~BIT0;

else
PORTA |= BIT0;

}
}

EE 308 Spring 2014

/* Convert signals on Channels AD08 through AD15. Set up for
10-bit, multi-channel do one set of scans, save values in variables
*/

#include "hcs12.h"

main()
{

unsigned int ch[8]; /* Variable to hold result */
ATD1CTL2 = 0x80; /* Power up A/D, no interrupts */
ATD1CTL3 = 0x40; /* Do eight conversions */
ATD1CTL4 = 0x05; /* 10-bit mode, 7 us/conversion */
ATD1CTL5 = 0x92; /* 1 0 0 1 0 0 1 0

 | | | | __/
 | | | | |
 | | | | _ First channel = 2
 | | | ___ MULT = 1 => multiple channels
 | | __ SCAN = 0 => one set of conversions
 | ____DSGN = 0 => unsigned
 ______DJM = 1 => right justified */

/**/

while ((ATD1STAT0 & BIT7) == 0) ; // Wait for sequence to finish

ch[0] = ATD1DR0;
ch[1] = ATD1DR1;
ch[2] = ATD1DR2;
ch[3] = ATD1DR3;
ch[4] = ATD1DR4;
ch[5] = ATD1DR5;
ch[6] = ATD1DR6;
ch[7] = ATD1DR7;

}

