- MC9S12 Assembler Directives

- A Summary of MC9S12 Instructions
- Disassembly of MC9S12 op codes
- Review of Addressing Modes
- Which branch instruction to use (signed vs unsigned)
- Using X and Y registers as pointers
- Hand assembling a program
- How long does a program take to run?
o Assembler directives
- How to disassemble an MC9S12 instruction sequence

Summary of HCS12 addressing modes
ADDRESSING MODES

Name		Example	Op Code	Effective Address
INH	Inherent	ABA	1806	None
IMM	Immediate	LDAA \#\$35	8635	$P C+1$
DIR	Direct	LDAA \$35	9635	0x0035
EXT	Extended	LDAA \$2035	B6 2035	0x2035
IDX IDX1 IDX2	Indexed	LDAA 3, x LDAA $30, \mathrm{x}$ LDAA $300, \mathrm{X}$	$\begin{array}{lllll} \text { A6 } & 03 & & \\ \text { A6 } & \text { E0 } & 13 & \\ \text { A6 } & \text { E2 } & 01 & \text { 2C } \end{array}$	$\begin{aligned} & x+3 \\ & x+30 \\ & x+300 \end{aligned}$
IDX	Indexed Postincrement	LDAA 3, $\mathrm{X}+$	A 632	$\mathrm{X} \quad(\mathrm{X}+3 \rightarrow \mathrm{x})$
IDX	Indexed Preincrement	LDAA 3, +X	A 6 22\|	$x+3 \quad(\mathrm{x}+3 \rightarrow \mathrm{x})$
IDX	Indexed Postdecrement	LDAA 3, X -	A6 3D	$\mathrm{X} \quad(\mathrm{X}-3 \rightarrow \mathrm{x})$
IDX	Indexed Predecrement	LDAA 3,-X	A6 2D	$\mathrm{x}-3 \quad(\mathrm{X}-3 \rightarrow \mathrm{x})$
REL	Relative	BRA \$1050 LBRA \$1F00	$\begin{array}{ll} 20 & 23 \\ 18 & 20 \end{array} \quad \mathrm{EE} \quad \mathrm{CF}$	$\begin{aligned} & P C+2+\text { Offset } \\ & P C+4+\text { Offset } \end{aligned}$

EE 308 Spring 2014

A few instructions have two effective addresses:

- MOVB \#\$AA,\$1C00 Move byte 0xAA (IMM) to address \$1C00 (EXT)
- MOVW 0,X,0,Y Move word from address pointed to by X (IDX) to address pointed to by Y (IDX)

A few instructions have three effective addresses:

- BRSET FOO,\#\$03,LABEL Branch to LABEL (REL) if bits \#\$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

- Registers X and Y are often used to point to data.
- To initialize pointer use

ldx \#table
 not

ldx table

- For example, the following loads the address of table (\$1000) into X; i.e., X will point to table:
ldx \#table ; Address of table $\Rightarrow X$
The following puts the first two bytes of table (\$0C7A) into X. X will not point to table:

Idx table ; First two bytes of table $\Rightarrow X$

- To step through table, need to increment pointer after use

ldaa 0,x

inx
or

[^0]EE 308 Spring 2014

Which branch instruction should you use?
Branch if A > B
Is $0 \mathrm{xFF}>0 \mathrm{x} 00$?
If unsigned, $0 \times \mathrm{xFF}=255$ and $0 \times 00=0$, so $0 \mathrm{xFF}>0 \mathrm{x} 00$

If signed, $0 x F F=-1$ and $0 x 00=0$, so $0 \mathrm{xFF}<0 \mathrm{x} 00$

Using unsigned numbers: BHI (checks C bit of CCR)
Using signed numbers: BGT (checks V bit of CCR)
For unsigned numbers, use branch instructions which check C bit
For signed numbers, use branch instructions which check V bit

Hand Assembling a Program

To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go into memory. (e.g., org \$2000 will put the first instruction at address \$2000.)
2. Look at the first instruction. Determine the addressing mode used.
(e.g., ldab \#10 uses IMM mode.)
3. Look up the instruction in the MC9S12 S12CPUV2 Reference Manual, find the appropriate Addressing Mode, and the Object Code for that addressing mode. (e.g., ldab IMM has object code C6 ii.)

- Table A. 1 of the S12CPUV2 Reference Manual has a concise summary of the instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary. (e.g., ldab \#10 becomes C6 0A.)
5. Add the number of bytes of this instruction to the address of the instruction to determine the address of the next instruction. (e.g., \$2000 + $\mathbf{2}$ = \$2002 will be the starting address of the next instruction.)

org \$2000 ldab \#10
 loop: clra dbne b,loop swi

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2010

Abs.	Re	el. Loc Obj. co	urce line	
1	1			
2	2	00002000	prog: equ	\$2000
3	3			prog
4		a002000 C60A		\#10
5		a002002 87	loop: clra	
6		a002003 0431 FC	dbn	b,loop
7		a002006 3F	swi	

Table A－1．Instruction Set Summary（Sheet 7 of 14）

Source Form	Oporation	Addr． Mods	$\begin{aligned} & \text { Machine } \\ & \text { Coding (har) } \end{aligned}$	HCS12	M63HC12	SXHI	NZVC
LBGT rals	Long Branch il Gractor Than $(\mathrm{i} \mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0)($ signod $)$	AEL	1日 2E q9 Ir	ONF\％／ano ${ }^{1}$	OPVP／ ONO 1	－－－－	－－－－
LBHImhe	Long Branch it Highar （ $\mathrm{F} \mathrm{C}+\mathrm{Z}=\mathrm{d}$ ）（unsignod）	FEL	$1 \mathrm{l} 22 \mathrm{q9} \mathrm{Ir}$	ONTV／ANO ${ }^{1}$	OVPD／ONO ${ }^{1}$	－－－－	－－－－
LHHS mate	Long Eranch il Highar or Sama ［ $\mathrm{F} \mathrm{C}=0$ ］（uneignod） sama finction as LBCC	AEL	1 l 24 gq IT	ONFV／ano ${ }^{1}$	ONPW／ONO ${ }^{1}$	－－－－	－－－－
LBLE rode	Long Aranch i＇Lass Than or Equal $\left[\begin{array}{l}Z+(N \oplus V)=1)(\text { signod }) ~\end{array}\right.$	FEL	1日 2F q9 IT	DNTV／ano ${ }^{1}$	OWVW／ OFO 1	－－－－	－－－－
LBLOmhe	Long Branch il Lower ［ $1 \mathrm{C}=1$ 1）（unsignod） same function as LBCS	AEL	1825 99 rr	ONTV／ano ${ }^{1}$	ONPD／ONO ${ }^{1}$	－－－－	－－－－
LBLS ratis	Long Branch il Lower or Same （ $\mathrm{AC} \mathrm{C}+\mathrm{Z}=1$－$)$（unsigned）	FEL	1823 प9 rr	OFNV／GNO ${ }^{1}$	OVPD／OED ${ }^{1}$	－－－－	－－－－
LBLTmles	Long Branch il Lass Than $[\mathrm{FN} \oplus \mathrm{V}-1)$（ a gnod）	REL	18 2D q9 rr	OFNV／CANO	ONVP／$/ 20{ }^{1}$	－－－－	－
LBMIral 16	Long Branch if Minus（if $\mathrm{N}=1$ ）	AEL	1日 2\＃99 rr	00\％\％／ano ${ }^{1}$	ONPD／CNO ${ }^{1}$	－	－
LBNE rale	Long Eranch in Not Equal（\＃Z＝0）	REL	18 26 gq rr	005\％／ano ${ }^{1}$	ONPD／ONO ${ }^{1}$	－－－－	－－－－－
LAPL mide	Long Eranch in Plas（f N＝0）	REL	1日 2A q9 rr	005\％／ano ${ }^{1}$	OVPD／ONO ${ }^{1}$	－－－－	－－－－－
LBPA mil 6	Long Eranch Aways（it f－1）	REL	1日 20 q9 rr	DFFV	OWF	－	－－－－
LBRN mad 16	Long Eranch Nsvor（f 1 －0）	AEL	18 21 q9 rr	000	OnO	－－－－	－－－－
LEVC mals	Long Eranch il Ovarfow Bt Claar（1）V－0）	REL	1日 28 q9 rr	DNTV／ano ${ }^{1}$	ONPD／ONO ${ }^{1}$	－	－－－－
LEVSmas	Long Branch if Ovarfow Be Sot（if V＝1）	FEL	18 29 q9 rr	005v／ano ${ }^{1}$	OVPD／ONO ${ }^{1}$	－－－－	－－－－
LDAA＊oprs LDAA qprla LDMA qpisa LDMA qpo0 yysp LDMA qpolyysp LDMA qpaiex．esp LDMA［Dyscp］ LDMA［opais．jysp］	$\left[\begin{array}{l} \mathrm{M}] \rightarrow \mathrm{A} \\ \text { oad Aocumulator } \mathrm{A} \end{array}\right.$					－－－－	$\triangle \triangle 0-$
LDAB toprs LDAB qpila LDAB qorisa LDAB qpon＿ууsp LDAB propyysp LDAB qoalexysp LDAB［D，y asp］ LDAB［opads，ysap］	$\begin{aligned} & M] \Rightarrow \text { B } \\ & \text { Load Aocumulator B } \end{aligned}$					－－－－	$\triangle \Delta 0-$
	$\begin{aligned} & (\mathrm{M} \cdot \mathrm{M}+1) \Rightarrow \mathrm{A} \cdot \mathrm{~B} \\ & \text { Load Doubla Acoumulator } \mathrm{D}(\mathrm{~A} \cdot \mathrm{~B}) \end{aligned}$	$[\mathrm{NM}$ DIR EXT IDX $[\mathrm{DOK} 1$ $[\mathrm{DDC}$ $[\mathrm{D}, \mathrm{IDX}]$ $[\mathrm{DOC}]$		50 MrE ROD MrI ROD frav モITMロE	$\begin{array}{r} \mathrm{DP} \\ \mathrm{RER} \\ \mathrm{NOR} \\ \mathrm{RER} \\ \mathrm{RFO} \\ \mathrm{EROR} \\ \text { EIERER } \\ \text { EIMRER } \end{array}$	－－－－	$\triangle \triangle 0-$

Note 1．OPPPMOPO indcates this iretruction takas four oyclas to rofil the instruction quave if ha branch is taban and throe cydas if tha branch is not tavan．

Table A－1．Instruction Set Summary（Sheet 3 of 14）

Source Form	Oporation	Addr． Modo	$\begin{gathered} \text { Machine } \\ \text { Coding (har) } \end{gathered}$	HCS12 Acco	M63HC12	SXHI	NZVC
PLSma	Branch in Lower or Sarne （IC $\mathrm{C}+\mathrm{Z}=1$ 1）（unsignod）	FEL	23 Ir	NWW／V ${ }^{1}$	WFS／${ }^{1}$	－－－－	－－－－
BLTrals	Branch il Lass Than ［f $\mathrm{N} \oplus \mathrm{V}=1$ ）（aignod）	REL	2D II	NOW／ p^{1}	WF／8 ${ }^{1}$	－－－－	－－－－
BMI rate	Branch il Minus［ $1 \mathrm{~N}=1$ ］	REL	2B II	FOT／ V^{1}	$\mathrm{FWF} / \mathrm{F}^{1}$	－－－－－	－－－－－
ENEmle	Branch in Not Equal（ $12 \mathrm{Z}=0$ ）	REL	26 II	NOT／ p^{1}	FFN／ F^{2}	－－－－	－－
BPL mla	Eranch il Plus（if $\mathrm{N}=0$ ）	AEL	2A Ir	$5 N T / \mathrm{p}^{1}$	WFS／${ }^{1}$	－－－－	－－－－
Braml	Branch Aways（ F 1－1）	AEL	20 II	NTP	WF\％	－－－－－	－－－－－
B7CLRoprin，mskg，rede BPCLR orriEn msks，mals BFCL．R opm2 yysp mske，rols BRCL．R oponxysp mskg mla BRCL．R oporis，ysp，mske，rele	$\begin{aligned} & \text { Branch if }(\mathrm{N} / \cdot(\mathrm{mm})=0 \\ & \text { [f All Soloctad Bt }(\mathrm{s}) \text { Cloar) } \end{aligned}$			$\begin{aligned} & x F N V \\ & x \mathrm{FFV} \\ & x F W V \\ & x \mathrm{FFV} \\ & \mathrm{FIFVV} \end{aligned}$	rWF rEWF rWF rEEWF ETVEEFWF	－－－－	－－－－
BRN male	Branch Novor（ $\mathrm{f}^{\text {1 }}$－0）	FEL	21 II	F	\％	－－－－－	－－－－
BRSET qurg msks，rals BRSET prifin，nskg rde BRSET qum yysp，mskg，rele BRSET क propysp msks，rols BRSET qurigxyp mskg vals	Branch in $(\mathrm{M}) \cdot(\mathrm{mm})=0$ ［f All Soloctad Bt (s) Sot	$\begin{aligned} & \hline D R \\ & E X T \\ & I D X \\ & I D X 1 \\ & I D D C 2 \end{aligned}$			$\begin{array}{r} \text { rWF } \\ \text { rEWF } \\ \text { rWF } \\ \text { rEEWF } \\ \text { ETVEEWF } \end{array}$	－－－－－	－－－－
BSET qre，mskg BSET qriGq mskg BSET qo0 ，yyp，mskg BSET qm0 ，ysp，mskg BSET qpil Enysp mskg	$\begin{aligned} & M+(m m) \Rightarrow M \\ & \text { Sot Eit(s) in Mamory } \end{aligned}$	DIA EXT IDX 1 CO 1 $1 \mathrm{DOCO}_{2}$				－－－－	$\triangle \Delta 0-$
BShma	$[$ SP］$-2 \Rightarrow$ SP；RTNerHTML $\Rightarrow M(S P) M(S P+1)$ Subroufns addross $\Rightarrow \mathrm{PC}$ Aranch to Subroutine	FEL	07 Ir	STTV	VWF	－－－－	－－－－
EMCmis	Eranch in Ovarfow Et Claur（ $\mathrm{F} \mathrm{V}=0$ d）	REL	2 III	FOT／ p^{1}	WFS／ F^{1}	－－－－－	－－－－
EVSrals	Eranch if Ovarfow Ex Set（it $\mathrm{V}=1$ ）	REL	29 II	FOT／ p^{1}	$\mathrm{PWS} / \mathrm{s}^{1}$	－－－－－	－
Call qprisa，page CALL ppan yysp，page CAll qual．ysp，page CAll poridysp，poge CALL D，ysp］ Call［parig xysp］	$[\mathrm{SP}]^{-2} \Rightarrow \mathrm{SP} ; \mathrm{ATN}_{2}$ RTN $\Rightarrow \mathrm{M}_{(S P)} \mathrm{M}_{(S P+1)}$ $(S P)-1 \Rightarrow S P ;(P P G) \Rightarrow M_{S P}$ ； $\mathrm{Pg} \Rightarrow \mathrm{PPAGE}$ rogistar，Program addross $\Rightarrow \mathrm{PC}$ Call subroutna in astandad mamory Progran may be locatod on another aspareion memory poge．） Indiroct modes get progran addrass and now pg valua basad on pointar．		```4A hh 11 pg 4B xb pg 4B xb If pg 4B xb co ff pg 4B xb 4B xb ce ff```	gnSxppy gnSxvpy gnisupp Egntappy ETigntaxp ETignLawPF		－－－－	－－－－
CBA	$\begin{array}{\|l\|} \hline A]-(B) \\ \text { Compare B Ait Accumulators } \end{array}$	INH	18 17	D0	D0	－－－－	$\triangle \Delta \Delta \Delta$
CLC	$0 \Rightarrow$ C Trarslatar b ANDCC at FE	INM	10 FE	F	F	－－－－	－－－0
CLI	$0 \Rightarrow 1$ Translatas b ANDCC atEF ［snablas l－bit inlampts）	INM	10 EF	F	T	－－－0	－－－－
CLAqprisa CLR quon yys CLR prainysp CLRqparis．ysp CLRP Dyspl CLR［porid．y ypp CLPA CLPB	$0 \Rightarrow M$ Coar Marnory Location $0 \rightarrow A$ Coar Accumulator A $0 \Rightarrow B$ Corr Accumbator B					－－－－	0100
CLV	$0 \Rightarrow V$ Trarslatas b ANDCC at FD	INM	10 FD	F	7	－－－－	－－0－

New Mexico Institute of Mining and Technology
EE 308 Spring 2014

Table A－1．Instruction Set Summary（Sheet 4 of 14）

Source Forn	Oporation	Addr． Mode	$\begin{aligned} & \text { Machine } \\ & \text { Coding (har) } \end{aligned}$	HCS12 Accom	M63HC12	SXHI	NZVC
CMPB zqrei CMPBops： CMPB orriss CMPB opmo xysp CMPB opn2 yysp CMPB oparls，yys CMPG［D，xysp］ CMPB［qunis．xysp］	$\text { (田 }-(M)$ Compare Accumulator B with Manory					－－－－	$\triangle \mathrm{A}$ A A
COM कprisa COM qpon yssp COM qual．ysp COM oporis．xysp COMD，yssp］ COM［qnilexysp］ CONA COMB	（M）\Rightarrow Maquialontto \＄FF $-(M) \Rightarrow M$ 1＇s Complament Monory Location （A）$\Rightarrow A \quad$ Complament Aocumulator A （B）\Rightarrow B Complamert Aocumulator B		$\begin{aligned} & 71 \text { hh } 11 \\ & 61 \text { xb } \\ & 61 \text { xb } 11 \\ & 61 \text { xb } 80 \text { e1 } \\ & 61 \text { xb } \\ & 61 \text { xb } 50 \text { et } \\ & 41 \\ & 51 \end{aligned}$			－－－－－	$\triangle \Delta 01$
CPD Apris CPD aresa CPD qriga CPD qro0 yysp CPD qualysp CPD qualexysp CPD Dyysp］ CPD［opols，yysp］	$\begin{aligned} & (A \cdot B)-(\mathrm{MCM}+1) \\ & \text { Compare D to Mampry }[16 \mathrm{EIt}) \text {) } \end{aligned}$					－－－－	$\triangle \mathrm{A}$ A A
CPS zapis CPSopren CPSoprics CPSopmo xysp CPSopnlyysp CPSomal6，ysp CPS［D，ysp］ CPS（qualexyspl	$[S P]-(M M+1)$ Compare SP to Manory（16－Bit）					－－－－－	$\triangle \Delta \Delta \Delta$
CPX zapris CPX opres CPXoprise CPX opme xysp CPX opmexy CPXoparis，yys CPX［D，ysp］ CPX［qpalexysp｜	$\begin{aligned} & \mathrm{X})-(\mathrm{M} \mid \mathrm{M}+1) \\ & \text { Comparo } \mathrm{X} \text { to Mamory }(16 \cdot \mathrm{Bi}) \end{aligned}$					－－－－	$\triangle \Delta \Delta \Delta$
CPY zapis CPY ors CPY oprise CPY opme xysp CPY opmexysp CPY operiExysp CPY［D，ysop］ CPY（quale．xyspl			BD 11 kk 9D dd HD hh 11 AD xb AD xb if AD xbse 51 AD xb AD xb ece 11			－－－－	$\triangle \Delta \Delta \Delta$
DAA	Adjust Sum to BCD Docinal Adust Acoumulator A	INH	18 07	OFD	ofo	－－－－	$\Delta \Delta \geqslant \Delta$
DHEQ abdya，mb	（ortr）－ $1 \Rightarrow$ antr if（antr）$=0$ ，then Branch slas Continue to next restruction Docroment Courlar and Branch if $=0$ （orlr＝A，B，D，X，Y，or SP）	AEL （10bic）	04 1b IT	WN［branch） WO［nn branch］	PF\％	－－－－	－－－
DENE abdiga，ral	（ontr）$-1 \Rightarrow$ critr f（ortr）not＝0，fhen Branch， alsa Continue to neat retruction Docrumert Courtar and Branch if $\neq 0$ （ortr＝A，B，D，X，Y，or SP）	REL （ 0 －bi）	04 1b IT	WN［branch） WOD［no branch］		－－－－	－－－－

DBNE

Operation (counter) $-1 \Rightarrow$ counter
If (counter) not $=0$, then $(\mathrm{PC})+\$ 0003+\mathrm{rel} \Rightarrow \mathrm{PC}$
Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative destination if the counter register does not reach zero. Rel is a 9-bit two's complement offset for branching forward or backward in memory. Branching range is $\$ 100$ to $\$ 0 \mathrm{FF}$ $(-256$ to +255$)$ from the address following the last byte of object code in the instruction.

CCR
Effects

Code and CPU
Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
DENE abdxysp, rel9	REL (9-blt)	04 lb rr	PPP (branch) PPO (no branch)

Loop Primitive Posthyte (1b) Coding				
Source Form	Postbyte ${ }^{1}$	Object Code	Counter Register	Offset
DBNE A, rel9 DBNE B, rel9 DENE D, rel9 DBNE X, rel9 DBNE Y, rel9 DBNE SP, rel9	0010×000 0010×001 0010×100 0010×101 0010×110 0010×111	0420 rr 0421 rr 0424 rr 0425 rr 0426 rr 0427 rr	$\begin{gathered} A \\ B \\ D \\ X \\ Y \\ S P \end{gathered}$	Positive
DBNE A, rel9 DBNE B, rel9 DBNE D, rel9 DBNE X, rel9 DBNE Y, rel9 DBNE SP, rel9	0011×000 0011 X001 0011 X100 0011×101 0011 X110 0011 X111	0430 rr 0431 rr 0434 rr 0435 rr 0436 rr 0437 rr	A B D X Y SP	Negative

NOTES:

1. Bits $7: 6: 5$ select DBEQ or DBNE; bit 4 is the offset sign bit. bit 3 is not used; bits $2: 1: 0$ select the counter register.

EE 308 Spring 2014

MC9S12 Cycles

- MC9S12 works on 48 MHz clock
- A processor cycle takes 2 clock cycles - P clock is 24 MHz
- Each processor cycle takes 41.7 ns ($1 / 24 \mu \mathrm{~s}$) to execute
- An instruction takes from $\mathbf{1}$ to $\mathbf{1 2}$ processor cycles to execute
- You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the Reference Manual.
- For example, LDAB using the IMM addressing mode shows one CPU cycle (of type P).
- LDAB using the EXT addressing mode shows three CPU cycles (of type rPO).
- Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is doing during each of the different types of CPU cycles.

2000
2000 C6 0A
200287
20030431 FC
2006 3F
org \$2000; Inst Mode Cycles
ldab \#10 ; LDAB (IMM) 1 loop:clra ; CLRA (INH) 1
dbne b,loop ; DBNE (REL) 3
swi ; SWI 9

The program executes the ldab \#10 instruction once. It then goes through the loop 10 times (which has two instructions, one with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:
$1+10 \times(1+3)+9=50$
50 cycles $=50 \times 41.7 \mathrm{~ns} /$ cycle $=2.08 \mu \mathrm{~s}$

LDAB

(M) $\Rightarrow B$
or
$\mathrm{imm} \Rightarrow B$
Loads B with either the value in M or an immediate value.

CCR

Effects

N : Set If MSB of result is set; cleared otherwise
Z : Set If result is $\$ 00$; cleared otherwise
v. Cleared

Code and
CPU
Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
LDAB \#oprsi	IMM	C6 ii	P
LDAB opr8a	DIR	D6 dd	rPf
LDAB opri6a	EXT	F6 hh 11	rPO
LDAB oprx0_xysppc	1 DX	E6 xb	rPf
LDAB opres xysppc	10×1	E6 xb ff	rPO
LDAB oprx $16, x y$ sppe	$1 \mathrm{IDX}^{10}$	E6 xbee ff	frep
LDAB [D, xysppc $]$	[D,IDX]	E6 xb	EIfrpf
LDAB [oprxi6,xysppc]	[10X2]	E6 xb ee fif	fiprpf

Assembler Directives

- In order to write an assembly language program it is necessary to use assembler directives.
- T hese are not instructions which the HC12 executes but are directives to the assembler program about such things as where to put code and data into memory.
- CodeWarrior has a large number of assembler directives, which can be found in the CodeWarrior help section.
- We will use only a few of these directives. (Note: In the following table, [] means an optional argument.) Here are the ones we will need:

EE 308 Spring 2014

Directive Name	Description	Example
equ	Give a value to a symbol	len: equ 100
org	Set starting value of location counter where code or data will go	\$1000
dc.b	Allocate and initialize storage for 8-bit variables. Place the bytes in successive memory locations	var: dc.b 2,18 name: dc.b "Jane"
dc.w	Allocate and initialize storage for 16-bit variables. Place the bytes in successive memory locations	var: dc.w \$ABCD
ds.b	Allocate specified number of 8-bit storage places	Table: ds.b 10
ds.w	Allocate specified number of 16-bit storage spaces	table: ds.w 50
dcb.b	Fill memory with a given value: The first value is the number of bytes to fill. The second number is the value to put into memory	init_data: dc.b 100,0

New Mexico Institute of Mining and Technology
EE 308 Spring 2014

Using labels in assembly programs

A label is defined by a name followed by a colon as the first thing on a line. When the label is referred to in the program, it has the numerical value of the location counter when the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

org	\$2000
table1: dc.b	\$23,\$17,\$2,\$a3,\$56
table2: ds.b	5
var: dc.w	\$43af

The CodeWarrior assembler produces a listing file (.lst). Here is the listing file from the assembler:

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- ------------------------------

1	1		org	\$2000
2	$\begin{aligned} & 2 \text { a002000 } 2317 \text { F2A3 } \\ & 00200456 \end{aligned}$	table1:	dc.b	\$23,\$17,\$f2,\$a3,\$56
3	3 a 002005	table2:	ds.b	5
4	4 a00200A 43AF	var:	dc.w	\$43af
5	5			

Note that table1 is a name with the value of $\$ 2000$, the value of the location counter defined in the org directive. Five bytes of data are defined by the dc.b directive, so the location counter is increased from \$2000 to \$2005.

Note that table2 is a name with the value of $\$ 2005$. Five bytes of data are set aside for table2 by the ds.b 5 directive. The as12 assembler initialized these five bytes of data to all zeros. var is a name with the value of \$200a, the first location after table2.

EE 308 Spring 2014

HC12 Instructions

1. Data Transfer and Manipulation Instructions - instructions which move and manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).

- Load and Store - load copy of memory contents into a register; store copy of register contents into memory.

LDAA \$2000 ; Copy contents of addr \$2000 into A
STD $0, \mathrm{X} \quad$; Copy contents of D to addrs X and $\mathrm{X}+1$

- Transfer - copy contents of one register to another.

TBA ; Copy B to A
TFR X,Y ; Copy X to Y

- Exhange - exchange contents of two registers.

XGDX ; Exchange contents of D and X
EXG A,B ; Exchange contents of A and B

- Move - copy contents of one memory location to another.

MOVB \$2000,\$20A0 ; Copy byte at \$2000 to \$20A0
MOVW 2,X+,2,Y+ ; Copy two bytes from address held ; in X to address held in Y ; Add 2 to X and Y
2. Arithmetic Instructions - addition, subtraction, multiplication, division (S12CPUV2 Reference Manual, Sections 5.6, 5.8 and 5.12).

ABA ; Add B to A; results in A
SUBD \$20A1 ; Subtract contents of \$20A1 from D
INX ; Increment X by 1
MUL ; Multiply A by B; results in D
3. Logic and Bit Instructions - perform logical operations (S12CPUV2 Reference Manual, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).

- Logic Instructions

ANDA \$2000 ; Logical AND of A with contents of ; \$2000
EORB 2,X ; Exclusive OR B with contents of ; address (X+2)

- Clear, Complement and Negate Instructions

NEG -2,X ; Negate (2's comp) contents of ; address (X-2)
CLRA ; Clear ACC A

- Bit manipulate and test instructions - work with bits of a register or memory.

BITA \#\$08 ; Check to see if Bit 3 of A is set
BSET \$0002,\#\$18 ; Set bits 3 and 4 of address \$0002

- Shift and rotate instructions

LSLA ; Logical shift left A
ASR \$1000 ; Arithmetic shift right value at address
; \$1000

EE 308 Spring 2014
4. Compare and test instructions - test contents of a register or memory (to see if zero, negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.) (S12CPUV2
Reference Manual, Section 5.9).

TSTA	$;(\mathrm{A})-0$-- set flags accordingly
CPX \#\$8000	$;(\mathrm{X})-\$ 8000$-- set flags accordingly

5. Jump and Branch Instructions - Change flow of program (e.g., goto, it-then-else, switch-case) (S12CPUV2 Reference Manual, Sections 5.19, 5.20 and 5.21).

JMP L1 ; Start executing code at address label ; L1
BEQ L2 ; If Z bit set, go to label L2
DBNE X,L3 ; Decrement X; if X not 0 then goto L3
BRCLR $\$ 1 \mathrm{~A}, \#$ \$80,L4 ; If bit 7 of addr \$1A clear, go to
; label L4
JSR sub1 ; Jump to subroutine sub1
RTS ; Return from subroutine
6. Interrupt Instructions - Initiate or terminate an interrupt call (S12CPUV2 Reference Manual, Section 5.22).

- Interrupt instructions

SWI ; Initiate software interrupt
RTI ; Return from interrupt

New Mexico Institute of Mining and Technology
EE 308 Spring 2014
7. Index Manipulation Instructions - Put address into X, Y or SP, manipulate X, Y or SP (S12CPUV2 Reference Manual, Section 5.23).

$$
\begin{array}{ll}
\text { ABX } & \text {; Add }(\mathrm{B}) \text { to }(\mathrm{X}) \\
\text { LEAX } 5, \mathrm{Y} & ; \text { Put address }(\mathrm{Y})+5 \text { into } X
\end{array}
$$

8. Condition Code Instructions - change bits in Condition Code Register (S12CPUV2 Reference Manual, Section 5.26).
```
ANDCC #$f0 ; Clear N, Z, C and V bits of CCR
SEV ; Set V bit of CCR
```

9. Stacking Instructions - push data onto and pull data off of stack (S12CPUV2 Reference Manual, Section 5.24).

PSHA ; Push contents of A onto stack PULX ; Pull two top bytes of stack, put into X
10. Stop and Wait Instructions - put MC9S12 into low power mode (S12CPUV2 Reference Manual, Section 5.27).

STOP	; Put into lowest power mode
WAI	; Put into low power mode until next interrupt

11. Null Instructions
NOP ; No operation
12. Instructions we won't discuss or use - BCD arithmetic, fuzzy logic, minimum and maximum, multiply-accumulate, table interpolation (S12CPUV2 Reference Manual, Sections 5.7, 5.16, 5.17, and 5.18).

Disassembly of an HC12 Program

- It is sometimes useful to be able to convert HC12 op codes into mnemonics.

For example, consider the hex code:

ADDR DATA

1000 C6 05 CE 2000 E6 0118060435 EE 3F

- To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.
- If the first byte of the instruction is anything other than \$18, use Sheet 1 of Table A.2. From this table, determine the number of bytes of the instruction and the addressing mode. For example, \$C6 is a two-byte instruction, the mnemonic is LDAB, and it uses the IMM addressing mode. Thus, the two bytes C6 05 is the op code for the instruction LDAB \#\$05.
- If the first byte is $\mathbf{\$ 1 8}$, use Sheet 2 of Table A.2, and do the same thing. For example, $\mathbf{1 8} \mathbf{0 6}$ is a two byte instruction, the mnemonic is ABA, and it uses the INH addressing mode, so there is no operand. Thus, the two bytes $\mathbf{1 8 0 6}$ is the op code for the instruction $\mathbf{A B A}$.
- Indexed addressing mode is fairly complicated to disassemble. You need to use Table A. 3 to determine the operand. For example, the op code \$E6 indicates LDAB indexed, and may use two to four bytes (one to three bytes in addition to the op code). The postbyte $\mathbf{0 1}$ indicates that the operand is 0,1 , which is 5 -bit constant offset, which takes only one additional byte. All 5-bit constant offset, pre and post increment and decrement, and register offset instructions use one additional byte. All 9-bit constant offset instructions use two additional bytes, with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction bit, which is held in the first postbyte.) All 16-bit constant offset instructions use three postbytes, with the 2nd and 3rd holding the 16 -bit unsigned offset.
- Transfer (TFR) and exchange (EXG) instructions all have the op code $\$ \mathbf{B 7}$. Use Table A. 5 to determine whether it is TFR or an EXG, and to determine which registers are being used. If the most significant bit of the postbyte is $\mathbf{0}$, the instruction is a transfer instruction.
- Loop instructions (Decrement and Branch, Increment and Branch, and Test and Branch) all have the op code \$04. To determine which instruction the op code $\mathbf{\$ 0 4}$ implies, and whether the branch is positive (forward) or negative (backward), use Table A.6. For example, in the sequence $\mathbf{0 4}$ 35 EE, the 04 indicates a loop instruction. The 35 indicates it is a DBNE \mathbf{X} instruction (decrement register X and branch if result is not equal to zero), and the direction is backward (negative). The EE indicates a branch of -18 bytes.
- Use up all the bytes for one instruction, then go on to the next instruction.

C6 $05 \quad \Rightarrow$ LDAB \#\$05 \quad| two-byte LDAB, IMM |
| :--- |
| addressing mode |

CE $2000 \Rightarrow$ LDX \#\$2000 | three-byte LDX, IMM |
| :---: |
| addressing mode |

E6 $01 \Rightarrow$ LDAB 1,X two to four-byte LDAB, IDX addressing mode. Operand $01=>1, \mathrm{X}$, a 5b constant offset which uses only one postbyte
$1806 \quad \Rightarrow$ ABA two-byte ABA, INH addressing mode
0435 EE \Rightarrow DBNE X,(-18) three-byte loop instruction Postbyte 35 indicates DBNE X, negative
3F $\quad \Rightarrow$ SWI one-byte SWI, INH addressing mode

EE 308 Spring 2014

Table A-2. CPU12 Opcode Map (Sheet 1 of 2)

$\mathrm{BGND}^{\dagger 6}$	$\begin{array}{\|l\|} \hline 10 \quad 1 \\ \text { ANDCC } \end{array}$	${ }^{20} \text { BRA }{ }^{3}$	${ }^{30} \text { PULX }{ }^{3}$	$\mathrm{Na}_{\mathrm{NEGA}}{ }^{1}$	${ }^{50}{ }^{\text {NEGB }}{ }^{1}$	${ }^{60} \mathrm{NEG}^{3-6}$	${ }^{70}{ }_{\text {NEG }}{ }^{4}$	${ }^{80} \text { SUBA }^{1}$	${ }^{90} \text { SUBA }{ }^{3}$	$\begin{aligned} & \text { AD }{ }^{3-6} \\ & \text { SUBA } \end{aligned}$	BOBA^{3}	$\mathrm{CO}_{\mathrm{SUBB}}{ }^{1}$	$\text { SUBB }^{3}$	$\begin{gathered} \text { EO }^{3-6} \\ \text { SUBB } \end{gathered}$	FO
IH	1 M	RL 2	IH 1	1 H	IH 1	ID $2-4$	EX 3	M $\quad 2$	DI 2	D $\quad 2-4$	EX 3	IM 2	DI 2	ID $\quad 2.4$	EX 3
${ }^{01} \mathrm{MEM}^{5}$	${ }^{11} \text { EDIV }^{11}$	$\begin{array}{r} 21 \\ B R N \end{array}$	${ }^{31} \text { PULY }^{3}$	COMA^{1}	COMB^{1}	COM^{3-6}	${ }^{71} \mathrm{COM}{ }^{4}$	${ }^{81} \text { CMPA }^{1}$	${ }^{91} \mathrm{CMPA}^{3}$	$\begin{gathered} \mathrm{A}_{1} \mathrm{CMPA}^{3-6} \\ \hline \end{gathered}$	CCMPA^{3}	$\mathrm{C} 1_{\mathrm{CMPB}}{ }^{1}$	CMPB^{3}	$\mathrm{E}_{\mathrm{CMPB}}{ }^{3-6}$	$\mathrm{F}_{\mathrm{CMPB}}{ }^{3}$
IH 1	1 H	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH $\quad 1$	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	D $\quad 2-4$	EX	IM 2	DI 2	ID $2-4$	EX 3
${ }^{02}{ }_{\text {INY }}{ }^{1}$	${ }^{12} \mathrm{MUL}^{\ddagger 1}$	$\begin{array}{cr} 22 & 3 / 1 \\ \mathrm{BHI}^{3 / 1} \end{array}$	${ }^{32} \text { PULA }^{3}$	${ }^{42}{ }^{4 N C A}{ }^{1}$	${ }_{\mathrm{INCB}}{ }^{1}$	${ }^{62} \mathrm{INC}^{3-6}$	$72 \quad 4$	${ }^{82} \mathrm{SBCA}^{1}$	SBCA^{92}	$\begin{gathered} \mathrm{A}_{2}{ }^{3-6} \\ \text { SBCA } \end{gathered}$	S2 SBCA^{3}	C2 SBCB^{1}	$\mathrm{S} 2_{\mathrm{SBCB}}{ }^{3}$	$\mathrm{E} 2^{\mathrm{SBCB}}{ }^{3-6}$	$\mathrm{F}^{\mathrm{SBCB}}{ }^{3}$
IH	1 H	RL	IH	1 H	IH	ID $2-4$	EX	1 M	DI	D $\quad 2-4$	EX	IM 2	DI	ID $2-4$	EX 3
${ }^{03} \mathrm{DEY}{ }^{1}$	${ }^{13} \text { EMUL }^{3}$	${ }^{23} \text { BLS }^{3 / 1}$	${ }^{33} \text { PULB }{ }^{3}$	DECA^{1}	${ }^{53} \text { DECB }^{1}$	${ }^{63} \mathrm{DEC}^{3-}$	$E C^{4}$	$\text { SUBD }^{2}$	${ }^{93} \text { SUBD }^{3}$	$\begin{aligned} & \text { A3 }{ }^{3-6} \\ & \text { SUBD } \end{aligned}$	$\text { SUBD }^{3}$	$\mathrm{Cl}_{\mathrm{ADDD}}{ }^{2}$	$\mathrm{AD}_{\mathrm{ADDD}}{ }^{3}$	$\mathrm{E}^{\mathrm{ADDDD}}{ }^{3-6}$	${ }^{\mathrm{F} 3} \mathrm{ADDD}^{3}$
IH 1	1 H	RL 2	IH 1	1 H	IH 1	ID $2-4$	EX 3	$1 \mathrm{M} \quad 3$	DI 2	ID $\quad 2-4$	EX 3	IM 3	DI 2	ID $2-4$	EX 3
loop^{04}	${ }^{14} \text { ORCC }^{1}$	$\mathrm{BCC}^{3 / 1}$	${ }^{34} \mathrm{PSHX}{ }^{2}$	${ }^{44} \text { LSRA }{ }^{1}$	${ }^{54} \text { LSRB }^{1}$	${ }^{64} \mathrm{LSR}^{3-6}$	${ }^{74}{ }_{\text {LSR }}{ }^{4}$	${ }^{84}{ }^{\text {ANDA }}{ }^{1}$	${ }^{94} \mathrm{ANDA}^{3}$	$\begin{gathered} \text { A4 }{ }^{3-6} \\ \text { ANDA } \end{gathered}$	$\mathrm{BA}_{\mathrm{ANDA}}{ }^{3}$	$\mathrm{CA}_{\mathrm{ANDB}}{ }^{1}$	D4 ${ }^{\text {ANDB }}{ }^{3}$	$\begin{gathered} \text { E4 }{ }^{3-6} \\ \hline \end{gathered}$	$\mathrm{F}_{\mathrm{ANDB}}{ }^{3}$
RL 3	$1 \mathrm{M} \quad 2$	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH 1	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI	D $\quad 2-4$	EX	IM 2	DI 2	ID $2-4$	EX 3
${ }^{05} \mathrm{JMP}^{3-6}$	$\begin{array}{\|c\|} \hline 15 \\ \mathrm{JSR}^{4 \cdot 7} \end{array}$	$\begin{gathered} 25 \mathrm{BCS}^{3 / 1} \end{gathered}$	${ }^{35} \mathrm{PSHY}^{2}$	${ }^{45} \text { ROLA }^{1}$	ROLB^{1}	${ }^{65} \mathrm{ROL}^{3-6}$	${ }^{75}{ }^{2}{ }^{4}$	${ }^{85} \text { BITA }{ }^{1}$	$9_{\text {BITA }}{ }^{3}$	$\begin{gathered} \text { A5 } \mathrm{BITA}^{3-6} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { BITA } \\ \text { BIT } \end{array}$	${ }^{\mathrm{C} 5}{ }^{\text {BITB }}{ }^{1}$	BITB^{3}	$\begin{gathered} \text { E5 }{ }^{3-6} \\ \text { BITB }^{3-8} \end{gathered}$	${ }^{\text {F5 }} \text { BITB }{ }^{3}$
ID $2-4$	ID $2-4$	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH 1	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	ID $\quad 2-4$	EX 3	IM 2	DI 2	ID $2-4$	EX 3
${ }^{06} \mathrm{JMP}^{3}$	${ }^{16}{ }_{\mathrm{JSR}}{ }^{4}$	$\begin{gathered} 28 \mathrm{BNE}^{3 / 1} \end{gathered}$	${ }^{36} \mathrm{PSHA}^{2}$	ABRA^{16}	RORB^{1}	$\begin{gathered} 68 \quad 3-6 \\ \mathrm{ROR}^{6} \end{gathered}$	${ }^{76} \mathrm{ROR}^{4}$	${ }^{86} \text { LDAA }{ }^{1}$	$\text { LDAA }^{36}$	$\begin{aligned} & \text { A6 }{ }^{3-6} \\ & \text { LDAA } \end{aligned}$	BBAA^{3}	LDAB^{1}	LDAB^{3}	$\begin{gathered} \text { E6 }{ }^{3-6} \\ \text { LDAB } \end{gathered}$	${ }^{\text {F6 }} \mathrm{LDAB}^{3}$
EX 3	EX	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH 1	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	D $\quad 2-4$	EX 3	IM 2	DI 2	ID $2-4$	EX 3
${ }^{07} \text { BSR }$	${ }^{17}{ }_{\text {JSR }}{ }^{4}$	$\begin{gathered} 27 \\ \mathrm{BEQ}^{3 / 1} \end{gathered}$	PSHB^{37}	${ }^{47}{ }^{\text {ASRA }}{ }^{1}$	${ }^{57}$ ASRB ${ }^{1}$	$\begin{array}{\|c} 67 \quad 3-6 \\ \hline \end{array}$	${ }^{77} \text { ASR }{ }^{4}$	${ }^{87} \text { CLRA }^{1}$	${ }^{97} \text { TSTA }{ }^{1}$	A7 NOP	$\begin{array}{\|l\|} \hline \text { B7 } \\ \text { TFR/EXG } \end{array}$	${ }^{C 7}{ }^{\text {CLRB }}$	${ }^{\mathrm{D} 7} \mathrm{TSTB}^{1}$	${ }^{\text {E7 }} \mathrm{TST}^{3-6}$	${ }^{\mathrm{F} 7} \mathrm{TST}{ }^{3}$
RL 2	DI 2	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH 1	ID $2-4$	EX 3	IH 1	IH 1	IH	$1 \mathrm{H} \quad 2$	IH 1	IH 1	ID $2-4$	EX 3
${ }^{08}{ }_{\text {INX }}{ }^{1}$	${ }^{18} \text { Page 2 }$	$\begin{gathered} 28 \mathrm{BVC}^{3 / 1} \end{gathered}$	${ }^{38} \text { PULC }^{3}$	${ }^{48} \text { ASLA }{ }^{1}$	${ }^{58} \text { ASLB }^{1}$	${ }^{68} \mathrm{ASL}^{3-6}$	${ }^{78}{ }_{\text {ASL }}{ }^{4}$	${ }^{88} \text { EORA }{ }^{1}$	${ }^{98}$ EORA 3	$\begin{aligned} & \text { A8 }{ }^{3-6} \\ & \text { EORA } \end{aligned}$	${ }^{\text {B8 EORA }}{ }^{3}$	$\mathrm{CB}^{\mathrm{EORB}}{ }^{1}$	DORB^{3}	$\text { E8 }{ }^{3-6}$	FORB^{3}
IH 1	- -	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH 1	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	D $\quad 2-4$	EX 3	IM 2	DI 2	ID $2-4$	EX 3
${ }^{09} \mathrm{DEX}^{1}$	${ }^{19} \text { LEAY }^{2}$	$\begin{gathered} 29 \quad 3 / 1 \\ \text { BVS }^{3 /} \end{gathered}$	${ }^{39} \mathrm{PSHC}^{2}$	${ }^{49} \mathrm{LSRD}^{1}$	${ }^{59}$ ASLD ${ }^{1}$	$\begin{gathered} 69 \quad \ddagger 2-4 \\ \text { CLR } \end{gathered}$	${ }^{79} \mathrm{CLR}{ }^{3}$	${ }^{89} \mathrm{ADCA}^{1}$	ADCA^{39}	$\begin{array}{cc} \hline \mathrm{A}_{1} \quad 3-6 \\ \mathrm{ADCA} \end{array}$	ADCA^{3}	$\mathrm{C9}_{\text {ADCB }}{ }^{1}$	$\mathrm{D}_{\mathrm{ADCB}}{ }^{3}$	$\begin{gathered} \mathrm{E} 9 \quad{ }^{3-6} \\ \mathrm{ADCB} \end{gathered}$	$\mathrm{F9}_{\text {ADCB }}{ }^{3}$
IH 1	ID $\quad 2-4$	RL 2	IH 1	$1 \mathrm{H} \quad 1$	IH 1	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	D $\quad 2-4$	EX 3	IM 2	DI 2	ID $2-4$	EX 3
${ }^{0 A} \mathrm{RTC}^{\ddagger 7}$	$\text { LEAX }^{2}$	$\begin{gathered} 2 \mathrm{~A}_{\mathrm{BPL}^{3 / 1}} \end{gathered}$	$\text { PULD }^{3}$	$\mathrm{CALL}^{\ddagger 7}$	STAA^{2}	$\begin{gathered} \text { 6A } \text { STAA }^{\ddagger 2-4} \end{gathered}$	STAA^{3}	$\text { ORAA }^{1}$	$\text { ORAA }^{3}$	${ }^{\text {AA } \quad 3-6}$	ORAA^{3}	$\text { ORAB }{ }^{1}$	ORAB^{3}	$\begin{gathered} \text { EA }{ }^{3-6} \\ \text { ORAB } \end{gathered}$	$\mathrm{FA}_{\mathrm{ORAB}}{ }^{3}$
IH 1	ID $\quad 2-4$	RL 2	IH 1	EX 4	DI 2	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	ID $\quad 2-4$	EX	IM 2	DI 2	ID $2-4$	EX 3
${ }^{\mathrm{OB}} \mathrm{RTI}^{\dagger 8}$	LEAS^{18}	$\begin{array}{\|c\|} \hline 2 \mathrm{BMI} \\ \mathrm{BMI}^{3 / 1} \end{array}$	$\mathrm{PSHD}^{3 \mathrm{~B}}{ }^{2}$	$\begin{gathered} \text { 4B } \ddagger 7-10 \\ \text { CALL } \end{gathered}$	${ }_{S_{S T A B}}{ }^{2}$	$\begin{gathered} \hline \text { 6B } \ddagger 2-4 \\ \text { STAB } \end{gathered}$	${ }^{7 B} \text { STAB }^{3}$	ADDA^{1}	${ }^{9 B}{ }^{9 D D A}$	$\begin{gathered} \mathrm{AB} \quad 3-6 \\ \mathrm{ADDA} \end{gathered}$	ABDA^{3}	$\mathrm{CB}_{\mathrm{ADDB}}{ }^{1}$	DB ${ }^{\text {ADDB }}{ }^{3}$	$\begin{array}{cc} \mathrm{EB} \quad{ }^{3-6} \\ \mathrm{ADDB} \end{array}$	$\mathrm{FB}_{\mathrm{ADDB}}{ }^{3}$
IH 1	ID $2-4$	RL 2	IH 1	ID 2-5	DI 2	ID $2-4$	EX 3	$1 \mathrm{M} \quad 2$	DI 2	D $\quad 2-4$	EX 3	IM 2	DI 2	ID $2-4$	EX 3
$\begin{array}{\|c\|} \hline \text { OC } \\ \text { BSET }^{4-6} \end{array}$	$\mathrm{BSET}^{4 \mathrm{C}}$	$\begin{gathered} 2 \mathrm{CBE}^{3 / 1} \\ \hline \end{gathered}$	$\begin{array}{cr} \hline 3 \mathrm{C} & \ddagger+5 \\ \text { Wavt } \end{array}$	${ }^{4 \mathrm{BSET}}{ }^{4}$	${ }^{5 C_{S T D}}{ }^{2}$	$\mathrm{CB}_{\mathrm{STD}}^{\ddagger 2-4}$	${ }^{7 C_{S T D}}{ }^{3}$	CPD^{2}	${ }^{9 C_{C P D}}{ }^{3}$	$\begin{gathered} \mathrm{AC} \mathrm{CPD}^{3-6} \end{gathered}$	$\mathrm{BC}_{\mathrm{CPD}}{ }^{3}$	CDDD^{2}	DCDD^{3}	EDD^{3-6}	LDD^{3}
ID 3-5	EX 4	RL 2	SP $\quad 1$	DI 3	DI 2	ID $\quad 2-4$	EX 3	$1 \mathrm{M} \quad 3$	DI 2	ID $\quad 2-4$	EX 3	IM 3	DI 2	ID $2-4$	EX 3
$\begin{gathered} \text { OD }{ }^{4-6} \\ \text { BCLR } \end{gathered}$	${ }^{1 D} \text { BCLR }^{4}$	$\mathrm{BLT}^{3 / 1}$	${ }^{3 D}$ RTS ${ }^{5}$	$\text { BCLR }^{4}$	${ }^{50} \mathrm{STY}^{2}$	$\begin{gathered} \hline \text { 6D } \ddagger 2-4 \\ \text { STY } \end{gathered}$	3^{3}	${ }^{8 D} \mathrm{CPY}^{2}$	${ }^{9 D} \mathrm{CPY}{ }^{3}$	$\begin{gathered} \text { AD }{ }^{3-6} \\ C P Y \end{gathered}$	CDPY^{3}	LDY ${ }^{2}$	DD LDY ${ }^{3}$	$\text { LDY }^{3-6}$	FD LDY ${ }^{3}$
ID 3-5	EX 4	RL 2	IH 1	DI 3	DI 2	ID $2-4$	EX 3	$1 \mathrm{M} \quad 3$	DI 2	D $\quad 2-4$	EX 3	IM 3	DI 2	ID $2-4$	EX 3
$\begin{array}{\|c\|} \hline 0 \mathrm{E} \\ \text { BRSET } \\ \hline \text { \#4-6 } \\ \hline \end{array}$	$\begin{array}{ll} 1 \mathrm{E} & 5 \\ \text { BRSET }^{5} \end{array}$	$\begin{gathered} 2 \mathrm{EGT}^{3 / 1} \end{gathered}$	$\mathrm{E}_{\text {WAI }}{ }^{\ddagger \dagger 7}$	$\left.\right\|^{4 \mathrm{ERSET}}{ }^{4}$	STX^{2}	$\mathrm{SE}_{\mathrm{ST}}^{\ddagger+\mathrm{X}}$	$\mathrm{E}_{\mathrm{STX}}{ }^{3}$	${ }^{8 \mathrm{E} P X^{2}}$	${ }^{9 E} \mathrm{CPX}^{3}$	$\begin{gathered} \mathrm{AE} \\ \mathrm{CPX} \end{gathered}$	$\mathrm{BE}_{\mathrm{CPX}}{ }^{3}$	$\mathrm{CE}_{\mathrm{LDX}}{ }^{2}$	LEX^{3}	$\mathrm{EE}_{\mathrm{LD}} \mathrm{X}^{3-6}$	FEDX^{3}
ID 4-6	EX 5	RL 2	IH 1	DI 4	DI 2	ID $2-4$	EX 3	IM 3	DI 2	D $\quad 2-4$	EX 3	IM 3	DI 2	ID 2.4	EX 3
$\begin{aligned} & \hline 0 \mathrm{~F} \quad \ddagger 4-6 \\ & \mathrm{BRCLR} \end{aligned}$	$\begin{array}{\|cc\|} \hline 1 \mathrm{~F} & 5 \\ \mathrm{BRCLR} \end{array}$	$\begin{gathered} 2 \mathrm{~F}_{\mathrm{BLE}} \\ \hline 3 / 1 \\ \hline \end{gathered}$	${ }^{3 \mathrm{SWI}_{\mathrm{SWI}}}{ }^{9}$	$\begin{array}{\|cr\|} \hline 4 \mathrm{~F} & 4 \\ \mathrm{BRCLR}^{2} \end{array}$	${ }^{5 F_{S T S}}{ }^{2}$	$\begin{gathered} 6 \mathrm{~F} \quad \ddagger 2-4 \\ \mathrm{STS} \end{gathered}$	${ }^{7 F} \mathrm{STS}^{3}$	${ }^{8 F} \mathrm{CPS}{ }^{2}$	${ }^{9 F} \mathrm{CPS}{ }^{3}$	CPS^{3-6}	$\mathrm{BF}_{\mathrm{CPS}}{ }^{3}$	${ }^{\mathrm{CF}} \mathrm{LDS}^{2}$	DFS^{3}	$\begin{gathered} \mathrm{EF}^{3-8} \\ \hline \text { LDS } \end{gathered}$	${ }^{\mathrm{FF}} \mathrm{LD}^{3}$
ID 4-6	EX	RL 2	IH	DI	DI 2	ID 2-4	EX 3	M 3	DI 2	D $2-4$	EX 3	IM 3	DI 2	ID 2.4	EX 3

Key to Table A-2

Table A-2. CPU12 Opcode Map (Sheet 2 of 2)

$\begin{gathered} 00{ }^{4} \\ \text { MOWW } \end{gathered}$	10	4													
IM-ID	1 H	RL	IH	H	H	H	H	H	H	H 2	2	IH 2	H	$1 \mathrm{H} \quad 2$	IH 2
	${ }^{11} \text { FDIV }{ }^{1}$	${ }^{21} \text { LBRN }^{3}$	$31 \quad 10$												10
EX-ID	$1{ }^{\text {H }}$	RL	IH	H	IH	H	H	H	H	H	H	H	H	H	H
	$\begin{array}{\|ll} \hline 12 & 13 \\ \hline \end{array}$	$22 \quad 4 / 3$			$52 \quad 10$								$\text { D2 } 10$		$\text { F2 } \quad 10$
D-ID	SP	RL	1 H	H	H	H	$1 \mathrm{H} \quad 2$	H	H	H	IH 2	H	H	H	H 2
IM-EX	H	RL	IH	H	IH	H	H	H	IH	H	IH	IH	H	H	H
	$14 \quad 12$	$\begin{array}{\|cc} \hline 24 \quad \text { LBCC } \end{array}$													
EX-EX	1 H	RL	IH	H	H	H	IH	H	IH	H	H	H	H	H	H
		$\begin{array}{\|ll} \hline 25 & 4 / 3 \end{array}$													
ID-EX	1 H	RL	IH	H	H 2	H 2	IH	H	IH 2	H 2	IH	H	H	H	H
	16	$\begin{array}{\|c\|} \hline 28 \quad 4 / 3 \\ \text { LBNE } \end{array}$	${ }^{36} \mathrm{TRAP}^{10}$	TRAP^{10}	${ }^{56} \text { TRAP }^{10}$										
1 H	1 H	RL	IH	H 2	H 2	H	H	H	H 2	H	H	H	H	H 2	H 2
07	${ }^{17} \text { CBA }$	$\begin{array}{\|cc} \hline 27 & 4 / 3 \\ \hline \text { LBEQ } \end{array}$							TRAP^{10}	$\mathrm{AR}_{\mathrm{A}}{ }^{10}$	$\mathrm{BR}_{\mathrm{TRAP}}{ }^{10}$	$\mathrm{CR}_{\mathrm{TRAP}}{ }^{10}$	DTRAP^{10}		10
$1 \mathrm{H} \quad 2$	H	RL 4	H	H	$1 \mathrm{H} \quad 2$	H 2	IH 2	H 2	IH 2	H	IH	IH	H	H	H
M-ID	D 3-5	RL	IH	H	IH 2	H	IH	IH	IH	H	IH	IH	H	H	H
	$\begin{gathered} 19 \quad 4-7 \\ \text { MINA }^{4-7} \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{LBVS}^{4 / 3} \end{gathered}$										$\begin{array}{\|c\|} \hline \text { C9 } \\ \text { TRAP }^{10} \\ \hline \end{array}$	$\text { TRAP }^{10}$	$\mathrm{EP}_{\mathrm{TRAP}}{ }^{10}$	$\text { TRAP }^{10}$
EX-ID	D	RL	H 2	H 2	IH 2	H 2	H 2	H 2	H 2	H	H	IH	H	H	H 2
	EMAXD	LBPL													
ID-ID	D $3-5$	RL	SP	H	H 2	H 2	H 2	H 2	H 2	H 2	H	H	H	H	H
	$\begin{array}{\|c\|} \hline 1 \mathrm{~B} \\ \text { EMIND } \end{array}$	$\begin{array}{\|cc\|} \hline \text { LBMI } \end{array}$				$6 \mathrm{BA} 10$		$8 \mathrm{~B} \quad 10$				$\begin{array}{\|c\|} \hline \text { CB }{ }^{10} \\ \hline \end{array}$	P^{10}		10
IM-EX	ID 3-5	RL	SP	IH 2	IH 2	H 2	H 2	H 2	IH 2	H 2	IH 2	IH	H	H	H
$\begin{aligned} & \text { OC } \\ & \text { MOVB } \end{aligned}$	$\begin{array}{\|cc} \hline 1 \mathrm{C} & 4-7 \\ \mathrm{MAXM} \end{array}$														$\text { FC } \quad 10$
EX-EX	ID $3-5$	RL	SP 2	H	H	H 2	H 2	H 2	IH 2	H 2	H	H	H	H	H
$\begin{gathered} 00 \\ M_{O V B} \end{gathered}$	$\begin{gathered} \text { 1D D4-7 } \\ \text { MINM } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LBLT } \end{array}$	$3 \mathrm{D}$			TRAP^{10}	${ }^{7 D} \operatorname{TRAP}^{10}$	${ }^{8 D} \operatorname{TRAP}^{10}$	$9 \operatorname{TRAP}^{10}$	$\mathrm{AD}_{\mathrm{TRAP}}{ }^{10}$	${ }^{\text {BD }} \mathrm{TRAP}^{10}$	TRAP^{10}	TRAP^{10}	$E_{\text {TRAP }}{ }^{10}$	FRAP^{10}
ID-EX	ID 3-5	RL	D 3	H	IH	H	IH	H 2	H 2	H	H 2	H 2	H 2	H 2	H
	EMAXI	${ }^{2 \mathrm{E}} \mathrm{LBGT}^{4 / 3}$		$\mathrm{AE}_{\mathrm{TRAP}}{ }^{10}$	$\mathrm{TE}_{\mathrm{TRAP}}{ }^{10}$	TEAP^{10}	${ }^{7 E} \mathrm{TRAP}^{10}$	${ }^{8 \mathrm{E}} \mathrm{TRAP}^{10}$	TRAP^{10}	$\text { AE }^{\text {TRAP }}{ }^{10}$	${ }^{\text {BE }}{ }^{10}$	TRAP^{10}	$\mathrm{DE}^{\mathrm{TRAP}}$	$\mathrm{EE}_{\mathrm{TRAP}}{ }^{10}$	10
IH 2	ID 3-5	RL	$1 \mathrm{H} \quad 2$	H 2	IH 2	H 2	IH 2	H 2	H 2	H 2	$1 \mathrm{H} \quad 2$	IH 2	H 2	H 2	H 2
TBA	EMINM	$\begin{gathered} 2 F_{\text {LBLE }} \\ \hline 1 / 3 \\ \hline \end{gathered}$	$\begin{gathered} 3 F_{E T B L} \end{gathered}$	TRAP^{10}	TRAP^{10}	TRAP^{10}	$\begin{gathered} 7 \mathrm{~F} \\ \mathrm{TRAP}^{10} \end{gathered}$	TRAP^{10}	TRAP^{10}	$\begin{array}{\|c\|} \hline \text { AF } \mathrm{TRAP}^{10} \\ \hline \end{array}$	$\mathrm{BF}_{\mathrm{TRAP}}{ }^{10}$	$\begin{array}{\|c\|} \hline \text { CF }{ }^{10} \\ \hline \text { RRAP } \end{array}$	TRAP^{10}	$\mathrm{EF}_{\mathrm{TRAP}}{ }^{10}$	$\begin{aligned} & \text { FF }{ }^{\text {TRAP }}{ }^{10} \end{aligned}$
H	D 3-5	RL	D	H	H	H 2	H	H	IH	H	1 H	H 2	H 2	H	H

* The opcode $\$ 04$ (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE. \dagger Refer to instruction summary for more information.
\ddagger Refer to instruction summary for different HC12 cycle count.
Page 2: When the CPU encounters a page 2 opcode ($\$ 18$ on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

$\begin{array}{cc} 00 & \\ 5 \mathrm{~b} \text { const } \end{array}$	$\left.\right\|^{10}-16, x$	$\left.\right\|^{20} \begin{aligned} & 1,+\mathrm{x} \\ & \text { pre-inc } \end{aligned}$	$\begin{aligned} 30 \\ 1, X+ \\ \text { post-inc } \end{aligned}$	$\left\lvert\, \begin{array}{cc} 40 \\ 5 \mathrm{~b} & \mathrm{Y}, \mathrm{Y} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & 50 \\ & 5 b \text { const } \end{aligned}\right.$	$1,+Y$ pre-inc		$\left\lvert\, \begin{array}{cc} 80 \\ & 0, S P \\ 5 b \\ \text { const } \end{array}\right.$	$\left\lvert\, \begin{aligned} & 80.16, S P \\ & 5 b \text { const } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { AO } \\ & \text { 1,+SP } \\ & \text { pre-inc } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 80 \\ & \text { 1.SP+ } \\ & \text { post-inc } \end{aligned}\right.$	$0, \mathrm{PC}$ 5b const	$\left\lvert\, \begin{aligned} & D 0 \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\left\lvert\, \begin{array}{cc} \text { En } X \\ \text { gb const } \end{array}\right.$	$\left\lvert\, \begin{gathered} \text { FO } \\ \text { n, SP } \\ 9 \mathrm{~b} \text { const } \end{gathered}\right.$
$\begin{array}{cc} \hline 01 & 1, X \\ 5 b & \text { const } \end{array}$	$\begin{array}{\|l\|} 11 \\ 5 \mathrm{~b} \text { const } \\ \hline 15, X \\ \hline \end{array}$	$\int_{2,+X}^{21}{ }^{21}$	$\begin{array}{r} 31 \\ 2, X_{+} \\ \text {post-inc } \end{array}$	$\begin{array}{\|cc} \hline 41 & 1, Y \\ 5 b & \text { const } \end{array}$	$\begin{aligned} & 51-15, Y \\ & 5 b \text { const } \end{aligned}$	$\begin{aligned} & 61 \begin{array}{l} 2++Y \\ \text { pre-inc } \end{array} \end{aligned}$	${ }^{71} \begin{array}{r} 2, Y_{+} \\ \text {post-inc } \end{array}$	$\begin{array}{ll} 81 \\ & 1, S P \\ 5 b \\ \text { const } \end{array}$	$\left\lvert\, \begin{aligned} & 91 \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\begin{aligned} & \text { A1 } \\ & 2,+\mathrm{SP} \\ & \text { pre-inc } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { B1 }{ }_{2 . S P+} \\ & \text { post-inc } \end{aligned}\right.$	$\begin{array}{ll} \mathrm{C} 1 & \\ \text { 1,PC } \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|l} \hline \text { D1 } \\ -15, P C \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{array}{ll} E 1 & n, X \\ & -n, x \\ & \text { const } \end{array}$	$\begin{array}{\|l} \text { F1 } \\ 9 \mathrm{n}, \mathrm{SP} \\ 9 \mathrm{const} \end{array}$
$\begin{array}{ll} 02 & 2 . x \\ 5 b \\ \text { const } \end{array}$	$\int_{5 \mathrm{~b} \text { const }}^{12}-1, \mathrm{X}$	$\left.\right\|^{22} \begin{aligned} & 3,+X \\ & \text { pre-inc } \end{aligned}$	$\begin{aligned} & 32 \\ & 3, \mathrm{X}+ \\ & \text { post-inc } \\ & \hline \end{aligned}$	$\begin{array}{\|cc} \hline 42 & \\ 5 \mathrm{l}, \mathrm{Y} \\ & \\ \hline \text { const } \end{array}$	$\begin{aligned} & 52 \quad-14, Y \\ & 5 b \text { const } \end{aligned}$	$\left\lvert\, \begin{aligned} & 62 \begin{array}{r} 3,+Y \\ \text { pre-inc } \end{array} \end{aligned}\right.$	72 $3, Y+$ post-inc	$\begin{array}{ll} 82 & \\ & 2, S P \\ 5 \mathrm{~b} \text { const } \end{array}$	$\left\lvert\, \begin{aligned} & 92 \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { A2 } \\ 3,+ \text { SP } \\ \text { pre-inc } \end{array}$	$\begin{array}{\|c\|} \hline 82 \\ 3, S P+ \\ \text { post-inc } \end{array}$	$\begin{aligned} & \mathrm{C} 2{ }_{2, \mathrm{PC}} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{D} 2 \\ -14, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{array}{\|ll} \hline E 2 n \\ \text { n, } X \\ 16 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|l\|} \hline \text { F2 } \\ \text { n,SP } \\ 16 \mathrm{~b} \text { const } \\ \hline \end{array}$
$\begin{array}{ll} \hline 3, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 23 \\ & 4,+X \\ & \text { pre-inc } \end{aligned}$	${ }^{33} \begin{array}{r} 4, \mathrm{X}+ \\ \text { post-inc } \end{array}$	$\begin{array}{\|cc} \hline 43 \\ 3, Y \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 53-13, Y \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline 63 \\ \text { 4,+Y } \\ \text { pre-inc } \end{array}$	4,Y+ post-inc	$\begin{array}{ll} 83 \\ & 3, S P \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 93-13, S P \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { A3 } \begin{array}{l} 4,+S P \\ \text { pre-inc } \end{array} \end{aligned}$	$\left.\right\|_{\mathrm{B}_{4, \mathrm{SP}+}} ^{\text {post-inc }}$	$\begin{aligned} & \mathrm{C} 3 \\ & 3, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$		$\begin{aligned} & E 3{ }_{[n, \mathrm{X}]} \\ & 16 \mathrm{~b} \text { indr } \end{aligned}$	$\begin{aligned} & \mathrm{F}_{3}{ }^{[\mathrm{n}, \mathrm{SP}]} \\ & 16 \mathrm{~b} \text { indr } \end{aligned}$
$\begin{array}{lc} 04 & \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 24 \\ & { }_{5,+\mathrm{X}} \\ & \text { pre-inc } \end{aligned}$	${ }^{34} \begin{array}{r} 5, \mathrm{X}+ \\ \text { post-inc } \end{array}$	$\begin{array}{\|cc} \hline 44 \\ 5 \mathrm{~b} \text { const } \mathrm{Y} \\ \hline \end{array}$	$\begin{aligned} & 54 \\ & 5 b \text { const } \end{aligned}$	$\begin{array}{\|l\|l} 64 \\ \text { 5,+Y } \\ \text { pre-inc } \end{array}$	$\int_{5, Y_{+}}^{74} \text { post--inc }$	$\int_{\text {4,SP }}^{84} \begin{aligned} & \text { 4, } \\ & 5 \mathrm{const} \end{aligned}$	$\left\lvert\, \begin{aligned} & 94 \\ & 5 b \text { const } \end{aligned}\right.$	$\begin{array}{\|l} \hline \text { A4 } \\ \text { 5,+SP } \\ \text { pre-inc } \end{array}$	$\begin{aligned} & 84 \\ & { }_{5, S P+} \\ & \text { post-inc } \end{aligned}$	$\begin{aligned} & \mathrm{C4} \text { 4,PC } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \mathrm{D} 4 \\ & -12, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|ll} E 4 & \\ A_{X} X \\ A \text { offset } \end{array}$	$\left.\right\|^{\text {F4 A.SP }}$
$\begin{array}{\|cc} 05 \\ 5 . X \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 15 \\ & 5 b \text { const } \end{aligned}$	$\int^{25} \begin{aligned} & 6,+X \\ & \text { pre-inc } \end{aligned}$	$\begin{array}{\|c} 35 \\ 6, \mathrm{X}+ \\ \text { post-inc } \end{array}$	$\begin{array}{\|cc} 45 & \\ 5, Y \\ 5 b & \text { const } \end{array}$	$\begin{aligned} & 55 \\ & 5 b \text { const } \end{aligned}$	$\begin{aligned} & 65 \\ & 6 .+Y \\ & \text { pre-inc } \end{aligned}$		$\begin{aligned} & 8, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 95 \\ & -11, S P \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline A 5 \\ 6,+S P \\ \text { pre-inc } \end{array}$	$\begin{array}{\|l\|} \hline 85 \\ 6 . S P+ \\ \text { post-inc } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{C5} \\ 5 \mathrm{~S}, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \mathrm{D5} \\ & -11, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline E 5 \\ B, X \\ B \text { offset } \end{array}$	$\begin{array}{\|c\|} \hline \text { F5 } \\ \text { B,SP } \\ \text { B offset } \end{array}$
$\begin{array}{\|cc} \hline 06 \\ \text { B, } \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 16 \\ & 5 \mathrm{~b} \text { const }-10, \mathrm{X} \\ & \hline \end{aligned}$	$\underbrace{26} \begin{aligned} & 7 .+x \\ & \text { pre-inc } \end{aligned}$	$\begin{array}{rr} 36 \\ 7, X+ \\ \text { post-inc } \end{array}$	$\begin{array}{\|cc} \hline 46 \\ \hline 6, Y \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 56 \\ & 5 \mathrm{~b} \text { const } \\ & \hline 10, Y \\ & \hline \end{aligned}$	$\begin{array}{\|ll} 86 \\ \text { 7.+Y } \\ \text { pre-inc } \end{array}$	$\int^{76} 7, Y_{+}$	$\begin{array}{ll} 86 \\ & 6, S P \\ 5 \mathrm{~b} & \\ \text { const } \end{array}$	$\begin{aligned} & 96 \\ & -10, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A6 } \\ 7,+ \text { SP } \\ \text { pre-inc } \end{array}$	$\begin{aligned} & 86 \\ & 7 . \mathrm{SP}+ \\ & \text { post-inc } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{C6} \\ \text { 6.PC } \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \text { D6 } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { E6 } & \\ \text { D offset } \end{array}$	$\begin{aligned} & \text { F6 } \\ & \text { D.SP } \\ & \text { D offset } \end{aligned}$
	$-9, \mathrm{X}$ 5 b const	$\begin{array}{\|c} \hline 27 \\ 8,+x \\ \text { pre-inc } \end{array}$	$\begin{array}{\|r\|} \hline 37 \\ 8, X+ \\ \text { post-inc } \\ \hline \end{array}$	$\begin{array}{\|cc} 47 \\ 7, Y \\ 5 \mathrm{~b} \text { const } \end{array}$	$-9, Y$ 5 b const	$\begin{array}{\|c\|} \hline 67 \\ 8,+Y \\ \text { pre-inc } \end{array}$		$\begin{array}{ll} 87 \\ & 7, S P \\ 5 b & \text { const } \end{array}$	$\begin{array}{\|l} 97 \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|c} \hline \text { A7 } \\ 8,+S P \\ \text { pre-inc } \end{array}$	$\begin{array}{\|l\|} \hline 87 \\ 8, S P+ \\ \text { post-inc } \end{array}$	7.PC 5b const	$\begin{array}{\|l} \hline \mathrm{D7} \\ \text {-9, PC } \\ 5 \mathrm{~b} \text { const } \end{array}$	E7 [D,X] D indirect	[D,SP] D indirect
$\begin{array}{\|cc} \hline 08 & 8, X \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|ll} 18 & \\ \hline 5 \mathrm{~b} \text { const } \end{array}$	$\left\lvert\, \begin{array}{ll} 28 \\ \text { pre-dec } \end{array}\right.$	$\begin{array}{\|c} 38 \\ 8, X- \\ \text { post-dec } \end{array}$	$\begin{array}{\|cc} \hline 48 \\ 8, Y \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{ll} 58 & \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{aligned} & 88 \\ & \text { 8,-Y } \\ & \text { pre-dec } \end{aligned}$		$\begin{array}{ll} 88 & \\ 8, S P \\ 5 \mathrm{~b} \text { const } \end{array}$	$\left\lvert\, \begin{aligned} & 98 \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { A8 } \\ 8,-\mathrm{SP} \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline 88 \\ 8, S P- \\ \text { post-dec } \end{array}$	$\begin{array}{\|l\|l} \hline \mathrm{C} 8 \\ 8, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \hline \text { D8 } \\ & 5 \mathrm{~B} \text {-8, PC } \\ & 5 \mathrm{const} \end{aligned}$	$\begin{array}{\|cc} \hline \text { Es } & \\ \text { n, } Y \\ 9 b & \text { const } \end{array}$	$\begin{array}{\|l\|} \hline \text { F8 } \\ \text { n, PC } \\ 9 \mathrm{~b} \text { const } \end{array}$
$\begin{array}{\|cc} \hline 09 & \\ 5 \mathrm{~g} \text { const } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 19 \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	${ }^{29} 7 .-x$	$\left\lvert\, \begin{gathered} 39 \\ 7 . X- \\ \text { post-dec } \end{gathered}\right.$	$\begin{array}{\|cc} \hline 49 & \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{ll} 59 & \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	${ }^{69} \begin{aligned} 7 .-Y \\ \text { pre-dec } \end{aligned}$	$\int_{\text {post-dec }}^{79}$	$\begin{aligned} & 89 \\ & 9, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 99 \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { A9 } \\ & \text { 7.-SP } \\ & \text { pre-dec } \end{aligned}\right.$	$\begin{aligned} & \text { B9 } 7, \mathrm{SP}- \\ & \text { post-dec } \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 9{ }_{9, \mathrm{PC}} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { D9 } \\ \text { - } 7, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$-n, Y$ $9 b$ const	$\left\lvert\, \begin{aligned} & \text { F9 } \\ & \left.\begin{array}{l} -n, P C \\ 9 b \text { const } \end{array} \right\rvert\, \end{aligned}\right.$
$\begin{array}{\|c\|} \hline 0 \mathrm{~A} \\ 10, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{r} 1 \mathrm{~A} \\ -6, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\left.\right\|_{\text {pre-dec }} ^{2 A}$	$\left\lvert\, \begin{gathered} 3 A_{6, X-} \\ \text { post-dec } \end{gathered}\right.$	$\begin{aligned} & 4 \mathrm{~A} \\ & 10, \mathrm{Y} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 5 A \\ & 5 b \text { const } \\ & -6, Y \end{aligned}$	$\begin{aligned} & \text { 6A } 6,-\mathrm{Y} \\ & \text { pre-dec } \end{aligned}$	$\int_{6, Y-}^{7 A}$	$\begin{aligned} & 8 \mathrm{~A} \\ & \\ & \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	9A -6,SP 5 b const	$\begin{array}{\|l\|} \hline \text { AA } \\ \text { 6.-SP } \\ \text { pre-dec } \end{array}$	$\begin{array}{\|c\|} \hline \text { BA } \\ \text { 6,SP- } \\ \text { post-dec } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CA} \\ 10, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & \hline \text { DA } \\ & \text { - } 6, P \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c} \hline \text { EA, } \\ \\ 16 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{aligned} & \text { FA } n, \mathrm{PC} \\ & 16 \mathrm{~b} \text { const } \end{aligned}$
$\begin{array}{\|cc} \hline 0 B & \\ 11, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|l\|} \hline 1 \mathrm{~B} \\ 5 \mathrm{~b} \text { const } \mathrm{X} \\ \hline \end{array}$	$\begin{array}{\|c} 28 \\ \text { pre-dec } \end{array}$	$\begin{array}{\|c\|} \hline 3 B_{5, X-} \\ \text { post-dec } \end{array}$	48 $11, Y$ $5 b$ const	$\begin{array}{\|c\|} \hline 5 B \\ 5 b \text { const } \\ \hline \end{array}$	$\begin{aligned} & 6 \mathrm{~B} \\ & \text { pre-- }-\mathrm{Y} \\ & \text { pedec } \end{aligned}$	$\left\lvert\, \begin{aligned} & 7 \mathrm{~B}, \mathrm{Y}- \\ & \text { post-dec } \end{aligned}\right.$	$\begin{aligned} & 8 \mathrm{BB} \\ & \quad 11, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 9 \mathrm{~B} \\ & 5 \mathrm{~b} \text { const } \\ & 5 \mathrm{const} \end{aligned}$	$\begin{aligned} & \text { AB } \\ & \begin{array}{l} 5,-\mathrm{SP} \\ \text { pre-dec } \end{array} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { BB } \\ & 5, \mathrm{SP}- \\ & \text { post-dec } \end{aligned}\right.$	$\begin{aligned} & \mathrm{CB} \\ & \text { 11,PC } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$		[n, Y] 16b indr	$\begin{array}{\|l} \hline \text { FB } \\ \text { [n, PC] } \\ 18 \mathrm{~b} \text { indr } \end{array}$
12,X 5b const	$-4, \mathrm{X}$ $5 b$ const	$\int_{4,-\mathrm{X}}^{\mathrm{pre-dec}}$	4. X-post-dec	12,Y 5b const	$\begin{array}{ll} 5 \mathrm{C} & \\ 5 \mathrm{~b} \text { const } \mathrm{Y} \end{array}$	$\begin{array}{\|l\|} \hline 8 \mathrm{~A},-\mathrm{Y} \\ \text { pre-dec } \end{array}$	4.Y-post-dec	12,SP 5b const	-4.SP 5b const	$\begin{array}{\|l} \mathrm{AC} \\ \begin{array}{c} 4,-\mathrm{SP} \\ \text { pre-dec } \end{array} \end{array}$	$\begin{aligned} & \text { BC } \\ & \text { 4,SP- } \\ & \text { post-dec } \end{aligned}$	12.PC 5b const	$\begin{aligned} & \hline D C \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	A.Y A offset	A.PC A offset
$\begin{array}{cc} 13, \mathrm{x} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{\|ll} \hline 1 \mathrm{D} & \\ & -3, \mathrm{x} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{r} \text { 2D } \\ \text { 3,-X } \\ \text { pre-dec } \end{array}$	$\begin{array}{\|c\|} \hline 3 \mathrm{D} \\ 3, \mathrm{X}- \\ \text { post-dec } \end{array}$	13,Y 5b const	$\begin{aligned} & 5 \mathrm{D} \\ & 5 \mathrm{~B} \text { const } \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \mathrm{D} \\ & \text { 3,-Y } \\ & \text { pre-dec } \end{aligned}$	$\begin{array}{r} 7 \mathrm{D} \\ 3, \mathrm{Y}- \\ \text { post-dec } \end{array}$	$\begin{array}{\|l} 8 \mathrm{D} \\ 13, \mathrm{SP} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 9 \mathrm{D} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{AD} \\ 3,-\mathrm{SP} \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l\|} \hline \text { BD } \\ 3, S P- \\ \text { post-dec } \end{array}$	13.PC 5b const	$\begin{aligned} & \hline \mathrm{DD} \\ & -3, P \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline \text { FD } \\ \text { B B,PC } \\ \text { Boffset } \end{array}$
	$\begin{array}{\|l\|} \hline 1 \mathrm{E} \\ -2, \mathrm{X} \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{array}{r} 2 E \\ 2,-X \\ \text { pre-dec } \end{array}$	${ }^{3 \mathrm{E}_{2 . \mathrm{X}}} \begin{aligned} & \text { post-dec } \end{aligned}$	14. Y 5b const	$\begin{aligned} & 5 \mathrm{E} \\ & 5 \mathrm{~b} \text { const } \mathrm{Y} \end{aligned}$	$\begin{aligned} & 6 \mathrm{E} \\ & { }_{2,-\mathrm{Y}} \\ & \text { pre-dec } \end{aligned}$	${ }^{7 E_{2, Y-}}$	$\begin{aligned} & 8 \mathrm{E} \\ & \text { 14.SP } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & 9 \mathrm{E} \\ & -2, \mathrm{SP} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{AE} \\ \text { 2,-SP } \\ \text { pre-dec } \end{array}$	$\begin{array}{\|l} \text { BE } \\ \text { 2,SP- } \\ \text { post-dec } \end{array}$	$\begin{aligned} & \mathrm{CE} \\ & \text { 14,PC } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{DE} \\ -2, \mathrm{PC} \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { EE } \\ \text { D.Y } \\ \text { D offset } \end{array}$	$\begin{array}{\|l\|} \hline \text { FE } \\ \text { D,PC } \\ \text { D offset } \end{array}$
$\begin{aligned} & \text { OF } \\ & \text { 15, } \mathrm{X} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{aligned} & \text { 1F } \\ & 5 \mathrm{~b} \text { const } \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 F_{1,-X} \\ & \text { pre-dec } \end{aligned}$	${ }^{3 F} \underset{\substack{1, X-\\ \text { post-dec }}}{ }$	$\begin{array}{\|l\|} \hline 4 \mathrm{~F} \\ \text { 15,Y } \\ 5 \mathrm{~b} \text { const } \end{array}$	$\begin{aligned} & 5 \mathrm{~F} \\ & 5 \mathrm{~b} \text { const } \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { 6F } \\ & \text { pre-dec } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~F} \\ & \text { 1,Y- } \\ & \text { post-dec } \end{aligned}$	$\begin{aligned} & 8 \mathrm{~F} \\ & \text { 15,SP } \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\left\lvert\, \begin{aligned} & 9 F^{-1, S P} \\ & 5 \mathrm{~b} \text { const } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { AF } \\ \text { 1,-sP } \\ \text { pre-dec } \end{array}$	$\begin{aligned} & \text { BF } \\ & \text { 1.SP- } \\ & \text { post-dec } \end{aligned}$	$\begin{aligned} & \text { CF } 15, \mathrm{PC} \\ & 5 \mathrm{~b} \text { const } \end{aligned}$	$\begin{array}{\|l\|} \hline D F \\ 5 \mathrm{~b} \text { const } \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \text { EF } \\ & \text { [D, Y] } \\ & \text { indirect } \end{aligned}\right.$	

Key to Table A-3

Table A-5. Transfer and Exchange Postbyte Encoding

TRANSFERS									
VS	MS \Rightarrow	0	1	2	3	4	5	6	7
0		$\mathrm{A} \Rightarrow \mathrm{A}$	$B \Rightarrow A$	$\mathrm{CCR} \Rightarrow \mathrm{A}$	TMP3 ${ }_{L} \Rightarrow \mathrm{~A}$	$\mathrm{B} \Rightarrow \mathrm{A}$	$\mathrm{X}_{\mathrm{L}} \Rightarrow \mathrm{A}$	$Y_{L} \Rightarrow A$	$\mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{A}$
1		$A \Rightarrow B$	$B \Rightarrow B$	$\mathrm{CCR} \Rightarrow \mathrm{B}$	TMP3 ${ }_{\text {L }} \Rightarrow \mathrm{B}$	$B \Rightarrow B$	$X_{L} \Rightarrow B$	$Y_{L} \Rightarrow B$	$S P_{L} \Rightarrow B$
2		$\mathrm{A} \Rightarrow \mathrm{CCR}$	$\mathrm{B} \Rightarrow \mathrm{CCR}$	$\mathrm{CCR} \Rightarrow \mathrm{CCR}$	TMP3 ${ }_{L} \Rightarrow$ CCR	$\mathrm{B} \Rightarrow \mathrm{CCR}$	$\mathrm{X}_{\mathrm{L}} \Rightarrow \mathrm{CCR}$	$Y_{L} \Rightarrow C C R$	$\mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{CCR}$
3		sex:A \Rightarrow TMP2	sex: $\mathrm{B} \Rightarrow \mathrm{TMP2}$	sex:CCR \Rightarrow TMP2	TMP3 \Rightarrow TMP2	D \Rightarrow TMP2	$x \Rightarrow$ TMP2	$Y \Rightarrow$ TMP2	$\mathrm{SP} \Rightarrow \mathrm{TMP2}$
4		$\begin{aligned} & \operatorname{sex}: A \Rightarrow D \\ & S E X A, D \end{aligned}$	$\begin{aligned} & \operatorname{sex}: B \Rightarrow D \\ & \text { SEXB,D } \end{aligned}$	$\begin{aligned} & \text { sex:CCR } \Rightarrow D \\ & \text { SEX CCR,D } \end{aligned}$	TMP3 \Rightarrow D	$D \Rightarrow D$	$x \Rightarrow$ D	$Y \Rightarrow D$	$\mathrm{SP} \Rightarrow \mathrm{D}$
5		$\begin{aligned} & \operatorname{sex}: A \Rightarrow X \\ & \operatorname{SEX} A, X \end{aligned}$	$\begin{aligned} & \text { sex:B } \Rightarrow X \\ & \text { SEX } B, X \end{aligned}$	$\begin{aligned} & \text { sex:CCR } \Rightarrow X \\ & \text { SEX CCR, } X \end{aligned}$	TMP3 \Rightarrow X	$D \Rightarrow X$	$x \Rightarrow x$	$Y \Rightarrow X$	$\mathrm{SP} \Rightarrow \mathrm{X}$
6		$\begin{aligned} & \operatorname{sex}: A \Rightarrow Y \\ & S E X A, Y \end{aligned}$	$\begin{aligned} & \operatorname{sex}: B \Rightarrow Y \\ & \text { SEXB,Y } \end{aligned}$	$\begin{aligned} & \text { sex:CCR } \Rightarrow Y \\ & \text { SEXCCR, } Y \end{aligned}$	TMP3 \Rightarrow Y	$D \Rightarrow Y$	$X \Rightarrow Y$	$Y \Rightarrow Y$	$\mathrm{SP} \Rightarrow \mathrm{Y}$
7		$\begin{gathered} \text { sex:A } \Rightarrow \text { SP } \\ \text { SEX A,SP } \end{gathered}$	$\begin{gathered} \text { sex:B } \Rightarrow \mathrm{SP} \\ \text { SEX B,SP } \end{gathered}$	$\begin{aligned} & \text { sex:CCR } \Rightarrow \text { SP } \\ & \text { SEX CCR,SP } \end{aligned}$	TMP3 \Rightarrow SP	$D \Rightarrow S P$	$x \Rightarrow$ SP	$\mathrm{Y} \Rightarrow \mathrm{SP}$	$\mathrm{SP} \Rightarrow \mathrm{SP}$
EXCHANGES									
\Downarrow LS	MS \Rightarrow	8	9	A	B	C	D	E	F
0		$A \Leftrightarrow A$	$B \Leftrightarrow A$	$C C R \Leftrightarrow A$	$\begin{gathered} \mathrm{TMP3}{ }_{\mathrm{L}} \Rightarrow \mathrm{~A} \\ \$ 00: \mathrm{A} \Rightarrow \mathrm{TMP} 3 \end{gathered}$	$\begin{aligned} & B \Rightarrow A \\ & A \Rightarrow B \end{aligned}$	$\begin{gathered} X_{L} \Rightarrow A \\ \$ 00: A \Rightarrow X \end{gathered}$	$\begin{gathered} Y_{L} \Rightarrow A \\ \$ 00: A \Rightarrow Y \end{gathered}$	$\begin{gathered} \mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{~A} \\ \mathrm{SOO}: \mathrm{A} \Rightarrow \mathrm{SP} \end{gathered}$
1		$A \Leftrightarrow B$	$B \Leftrightarrow B$	$C C R \Leftrightarrow B$	$\begin{gathered} \mathrm{TMP} 3_{\mathrm{L}} \Rightarrow \mathrm{~B} \\ \mathrm{SFF}: \mathrm{B} \Rightarrow \mathrm{TMP3} \end{gathered}$	$\begin{gathered} \mathrm{B} \Rightarrow \mathrm{~B} \\ \$ \mathrm{FF} \Rightarrow \mathrm{~A} \end{gathered}$	$\begin{gathered} x_{L} \Rightarrow B \\ \$ F F: B \Rightarrow x \end{gathered}$	$\begin{gathered} Y_{L} \Rightarrow B \\ \$ F F: B \Rightarrow Y \end{gathered}$	$\begin{gathered} S P_{L} \Rightarrow B \\ S F F: B \Rightarrow S P \end{gathered}$
2		$A \Leftrightarrow C C R$	$\mathrm{B} \Leftrightarrow \mathrm{CCR}$	$C C R \Leftrightarrow C C R$	$\begin{aligned} \mathrm{TMP3}_{\mathrm{L}} & \Rightarrow \mathrm{CCR} \\ \text { SFF:CCR } & \Rightarrow \mathrm{TMP3} \end{aligned}$	$\begin{gathered} \mathrm{B} \Rightarrow \mathrm{CCR} \\ \text { SFF:CCR } \Rightarrow \mathrm{D} \end{gathered}$	$\begin{array}{\|c\|} \hline x_{\mathrm{L}} \Rightarrow \mathrm{CCR} \\ \text { SFF:CCR } \Rightarrow \mathrm{x} \\ \hline \end{array}$	$\begin{gathered} Y_{L} \Rightarrow C C R \\ \text { \$FF:CCR } \Rightarrow Y \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{SP}_{\mathrm{L}} \Rightarrow \mathrm{CCR} \\ \mathrm{SFF}: \mathrm{CCR} \Rightarrow \mathrm{SP} \end{array}$
3		$\begin{gathered} \mathrm{SOO}: \mathrm{A} \Rightarrow \mathrm{TMP}^{2} \\ \mathrm{TMP2}_{\mathrm{L}} \Rightarrow \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \$ 00: B \Rightarrow \mathrm{TMP}^{2} \\ \mathrm{TMP2}_{\mathrm{L}} \Rightarrow \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { SOO:CCR } \Rightarrow \text { TMP2 } \\ \text { TMP2 }_{L} \Rightarrow C C R \end{gathered}$	TMP3 \Leftrightarrow TMP2	$\mathrm{D} \Leftrightarrow$ TMP2	X \Leftrightarrow TMP2	$Y \Leftrightarrow$ TMP2	$\mathrm{SP} \Leftrightarrow \mathrm{TMP2}$
4		\$00:A \Rightarrow D	\$00: $\mathrm{B} \Rightarrow \mathrm{D}$	$\begin{gathered} \$ 00: C C R \Rightarrow D \\ B \Rightarrow C C R \end{gathered}$	TMP3 \Leftrightarrow D	$D \Leftrightarrow D$	$X \Leftrightarrow D$	$Y \Leftrightarrow D$	$\mathrm{SP} \Leftrightarrow \mathrm{D}$
5		$\begin{gathered} \$ 00: A \Rightarrow X \\ X_{L} \Rightarrow A \end{gathered}$	$\begin{gathered} S O 0: B \Rightarrow X \\ X_{L} \Rightarrow B \\ \hline \end{gathered}$	$\begin{gathered} \$ 00: C C R \Rightarrow x \\ x_{L} \Rightarrow C C R \end{gathered}$	TMP3 \Leftrightarrow X	$D \Leftrightarrow X$	$X \Leftrightarrow X$	$Y \Leftrightarrow X$	$\mathrm{SP} \Leftrightarrow \mathrm{X}$
6		$\begin{gathered} \$ 00: A \Rightarrow Y \\ Y_{L} \neq A \end{gathered}$	$\begin{gathered} S O 0: B \Rightarrow Y \\ Y_{L} \Rightarrow B \end{gathered}$	$\begin{gathered} \$ 00: C C R \Rightarrow Y \\ Y_{L} \Rightarrow C C R \end{gathered}$	TMP3 $\Leftrightarrow Y$	$D \Leftrightarrow Y$	$X \Leftrightarrow Y$	$Y \Leftrightarrow Y$	$\mathrm{SP} \Leftrightarrow \mathrm{Y}$
7		$\begin{gathered} \$ 00: A \Rightarrow S P \\ S P_{\mathrm{L}} \Rightarrow \mathrm{~A} \end{gathered}$	$\begin{gathered} \$ 00: B \Rightarrow S P \\ S P_{L} \Rightarrow B \end{gathered}$	$\begin{gathered} \mathrm{SOO:CCR} \Rightarrow \mathrm{SP} \\ \mathrm{SP} \mathrm{~L} \Rightarrow \mathrm{CCR} \end{gathered}$	TMP3 \Leftrightarrow SP	$D \Leftrightarrow S P$	$\mathrm{X} \Leftrightarrow \mathrm{SP}$	$\gamma \Leftrightarrow S P$	$\mathrm{SP} \Leftrightarrow \mathrm{SP}$

[^1]Table A-6. Loop Primitive Postbyte Encoding (lb)

$\begin{array}{\|c\|} \hline \mathrm{DBEQ}^{\mathrm{D}} \\ (+) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 10 \\ \mathrm{DBEQ}^{\mathrm{A}} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \mathrm{DENE} \\ (+) \end{array}$	$\begin{array}{\|c\|} \hline 30 \\ \text { DBNE } \\ (-) \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 40 \mathrm{TBEQ} \\ (+) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50 \\ \substack{\text { TBEQ } \\ (-) \\ \hline \\ \hline} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 70 \\ \substack{\text { TBNE } \\ (-)} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \begin{array}{c} \infty 0 \\ \text { IBEQ } \\ (-) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{AD} \\ \hline \mathrm{IBNE} \\ (+)^{\mathrm{A}} \\ \hline \end{array}$	
$\begin{array}{\|c\|} \hline 01 \text { DBEQ } \\ (+) \end{array}$	$\begin{array}{\|c\|c\|} \hline 11 \\ \text { DBEQ }^{B} \\ (-) \end{array}$	$\underset{\substack{\text { DBNE } \\(+)}}{ }$	$\begin{array}{\|c\|} \hline 31 \\ \substack{\text { DBNE } \\ (-)} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 41 \\ \hline \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 51 \\ \begin{array}{c} \text { TBEQ } \\ (-) \end{array} \\ \hline \hline \end{array}$	$\begin{array}{\|c} \hline 61 \\ \hline \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c} \hline 71 \\ \hline \text { TBNE } \\ (-) \end{array}$	$\begin{array}{\|c\|c\|} \hline 81 \\ \substack{\text { IBEQ } \\ (+)} \\ \hline \end{array}$		$\begin{array}{\|c\|c\|} \hline \text { A1 } 1 \text { INE } \\ (+) \\ \hline \end{array}$	$\underset{\substack{\text { IBNE } \\(-)}}{ }$ B
02	12	22	32	42	52	62	72	82	92	A_{2}	E2
03	13	23	33	43	53			83	${ }^{1} 3$	A3	
$\begin{array}{\|c\|} \hline 04 \\ \text { DBEQ } \\ (+) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 14 \\ \text { DBEQ } \\ (-) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24 \\ \text { DENE } \\ (+) \end{array}$	$\begin{array}{\|c\|} \hline 34 \\ \text { DBNE } \\ (-) \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 54 \\ \mathrm{TBEQ}^{\mathrm{T}} \\ (-) \\ \hline \end{array}$	$\underset{\substack{\text { TBNE } \\(+)}}{\mathrm{E4}}$	$\begin{gathered} \hline 74 \\ \hline \text { TBNE } \\ (-) \\ \hline \end{gathered}$	$\underbrace{}_{\substack{88 \\ \text { IBEQ } \\(+)}}$	$\substack{\text { IBEQ } \\ (-)}$ 	$\begin{array}{\|c\|} \hline \text { A4 } \begin{array}{c} \text { IBNE } \\ (+) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { B4 IBNE } \\ (H) \\ \hline \end{array}$
05 DBEQ $(+)$	$\begin{array}{\|c} \hline 15 \\ \text { DBEQ } \\ (-) \\ \hline \end{array}$	$\underset{\substack{\text { DBNE } \\(+)}}{25}$	$\begin{gathered} 35 \\ \hline \text { DBNE } \\ (-) \\ \hline \end{gathered}$	$\underset{\substack{\text { TBEQ } \\(+)}}{45}$	55 TBEQ X $(-)$	$\begin{array}{\|c} \hline 65 \\ \hline \text { TBNE } \\ (+) \\ \hline \end{array}$	$\begin{gathered} \hline 75 \text { TBNE } X \\ H \\ \hline \end{gathered}$	85 $\substack{\text { IBEQ } \\(+)}$ X	$\underbrace{}_{\substack{\text { IBEQ } \\(H)}} \mathrm{X}$	$\begin{array}{\|c\|} \hline \text { A5 } \\ \begin{array}{c} \text { IBNE } \\ (+) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { B5 } \\ \text { IBNE } \\ (-) \\ \hline \end{array}$
$\begin{gathered} \hline \text { DBEQ } \\ \text { (t) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 16{ }_{\substack{\text { DBEQ } \\ (-)}} \mathrm{Y} \\ \hline \end{gathered}$	$\left.\right\|^{26}{ }^{26}{ }^{\text {DBNE }}$ (+)	$\begin{gathered} \hline 36 \\ \text { DBNE }^{3} \\ (-) \\ \hline \end{gathered}$	${ }_{T B E Q}{ }^{46}$ (+)	$\begin{array}{\|c\|} \hline 56 \\ \text { TBEQ } \\ (-) \end{array}{ }^{Y}$	$\begin{array}{\|l\|} \hline 66 \quad \mathrm{TBNE} \\ \hline \end{array}$ (+)	$\begin{array}{\|c} \hline 76 \\ \hline \end{array}$ H	$\begin{array}{\|c\|} \hline 86 \quad \mathrm{IBEQ} \\ (+) \\ \hline \end{array}$	$\underset{\substack{\infty 8 \mathrm{IBEQ} \\(H}}{ } Y$	$\underset{\substack{\text { ABNE } \\(+)}}{ }$	
07 DBEQ $(+)$	$\begin{gathered} \hline 17 \begin{array}{c} \text { DBEQ } \\ (-) \end{array} \\ \hline \end{gathered}$	$\mathrm{Z}_{\mathrm{DBNE}}^{27}$ (+)	37 DBNE $(-)$	(+	$\begin{array}{\|cc\|} \hline 57 & \text { SP } \\ \text { TBEQ } \\ (-) \\ \hline \end{array}$	${ }_{\substack{67 \\ \text { TBNE } \\ \text { SP }}}$ (+)	$\begin{array}{\|c\|c} \hline 77 & \text { SP } \\ \text { TBNE } \end{array}$ (-)	$\begin{gathered} \hline 87 \mathrm{SP} \\ \text { IBEQ } \\ (+) \\ \hline \end{gathered}$	97 IBEQ $(-)$		

Key to Table A-6

Table A-7. Branch/Complementary Branch

Branch				Complementary Branch			
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment
$\mathrm{r} \times \mathrm{m}$	BGT	2E	$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=0$	r ¢m	BLE	2F	Signed
$r \times m$	BGE	2C	$\mathrm{N} \oplus \mathrm{V}=0$	$\mathrm{r}<\mathrm{m}$	BLT	2D	Signed
$\mathrm{r}=\mathrm{m}$	BEQ	27	$Z=1$	r \quad m	BNE	26	Signed
$\mathrm{r} \leq \mathrm{m}$	BLE	2 F	$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})=1$	$\mathrm{r}>\mathrm{m}$	BGT	2 E	Signed
$r<m$	BLT	2D	$\mathrm{N} \oplus \mathrm{V}=1$	$r \geq m$	BGE	2C	Signed
$\mathrm{r}>\mathrm{m}$	BHI	22	$C+Z=0$	r ¢m	BLS	23	Unsigned
$\mathrm{r} \geq \mathrm{m}$	BHS/BCC	24	$\mathrm{C}=0$	$\mathrm{r}<\mathrm{m}$	BLO/BCS	25	Unsigned
$\mathrm{r}=\mathrm{m}$	BEQ	27	$Z=1$	$\mathrm{r} \neq \mathrm{m}$	BNE	26	Unsigned
$\mathrm{r} \leq \mathrm{m}$	BLS	23	$C+Z=1$	$\mathrm{r}>\mathrm{m}$	BHI	22	Unsigned
$\mathrm{r}<\mathrm{m}$	BLO/BCS	25	$\mathrm{C}=1$	$r \geq m$	BHS/BCC	24	Unsigned
Carry	BCS	25	$\mathrm{C}=1$	No Carry	BCC	24	Simple
Negative	BMI	2B	$\mathrm{N}=1$	Plus	BPL	2A	Simple
Overflow	BVS	29	$\mathrm{V}=1$	No Overflow	BVC	28	Simple
$\mathrm{r}=0$	BEQ	27	$Z=1$	$r \neq 0$	BNE	26	Simple
Always	BRA	20	-	Never	BRN	21	Unconditional

For 16-bit offset long branches precede opcode with a $\$ 18$ page prebyte.

[^0]: ldaa 1,x+

[^1]: TMP2 and TMP3 registers are for factory use only.

