
EE 308 Spring 2014

• Using the stack and the stack pointer
o The Stack and Stack Pointer
o The stack is a memory area for temporary storage
o The stack pointer points to the last byte in the stack
o Some instructions which use the stack, and how data is

saved and retrieved off the stack
o Subroutines and the stack
o An example of a simple subroutine
o Using a subroutine with PORTA to make a binary

counter on LEDs

EE 308 Spring 2014

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to
individual instructions

• Top-down design

4. Use names instead of numbers

EE 308 Spring 2014

Another Example of an Assembly Language Program

• Find the average of the numbers in an array of data.

• The numbers are 8-bit unsigned numbers.

• The address of the first number is $E000 and the address of the
final number is $E01F. There are 32 numbers.

• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

FIND AVERAGE OF NUMBERS IN ARRAY FROM 0XE000
TO 0XE01F

Treat numbers as 8−bit unsigned numbers

4 0xE000
5
1
8
6
11
…

0xE01F

EE 308 Spring 2014

Write program

;Program to average 32 numbers in a memory array

prog: equ $2000
data: equ $1000

array: equ $E000
len: equ 32

 org prog

 ldx #array ; initialize pointer
 ldy #0 ; initialize sum to 0

loop: ldab 0,x ; get number
 aby ; odd - add to sum
 inx ; point to next entry
 cpx #(array+len) ; more to process?
 blo loop ; if so, process

 tfr y,d ; to divide, need dividend in D
 ldx #len ; to divide, need divisor in X
 idiv ; D/X quotient in x, remainder in D
 stx answer ; done – save answer
 swi

 org data
answer: ds.w 1 ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.

EE 308 Spring 2014

The Stack and the Stack Pointer

• Sometimes it is useful to have a region of memory for temporary
storage, which does not have to be allocated as named variables.

• When we use subroutines and interrupts it will be essential to
have such a storage region.

• Such a region is called a Stack.

• The Stack Pointer (SP) register is used to indicate the location of
the last item put onto the stack.

• When you put something onto the stack (push onto the stack),
the SP is decremented before the item is placed on the stack.

• When you take something off of the stack (pull from the stack),
the SP is incremented after the item is pulled from the stack.

• Before you can use a stack you have to initialize the Stack
Pointer to point to one value higher than the highest memory
location in the stack.

• For the MC9S12 put the stack at the top of the data space

– For most programs, use $1000 through $2000 for data.
– For this region of memory, initialize the stack pointer to
$2000.
– If you need more space for data and the stack, and less for
your program, move the program to a higher address, and use
this for the initial value of the stack pointer.

EE 308 Spring 2014

• Use the LDS (Load Stack Pointer) instruction to initialize the
stack point.

• The LDS instruction is usually the first instruction of a program
which uses the stack.

• The stack pointer is initialized only one time in the program.

• For microcontrollers such as the MC9S12, it is up to the
programmer to know how much stack his/her program will need,
and to make sure enough space is allocated for the stack.

If not enough space is allocated the stack can overwrite data and/or
code, which will cause the program to malfunction or crash.

EE 308 Spring 2014

The stack is an array of memory dedicated to temporary
storage

↑

.

.

.

0x1EFC
0x1FFD
0x1FFE
0x1FFF
0x2000

SP points to the location last item placed
in block

SP decreases when you put an item on
stack

SP increases when you pull item from
stack

For HC12 EVBU, use 0x2000 as initial
SP:

STACK: EQU $2000
 LDS #STACK

EE 308 Spring 2014

An example of some code which uses the stack

↑

.

.

.

0x1FFB

0x1FFC

0x1FFD

0x1FFE

0X1FFF

0x2000

Stack Pointer

Initialize ONCE before first use (LDS
#STACK)

Points to last used storage location

Decreases when you put something on stack

Increases when you take something off stack

STACK: equ $2000
CODE: org $2000

 lds #STACK
 ldaa #$2e
 ldx #$1254
 psha
 pshx
 clra
 ldx #$ffff

 CODE THAT USES A & X

 pulx
 pula

EE 308 Spring 2014

EE 308 Spring 2014

EE 308 Spring 2014

Subroutines

• A subroutine is a section of code which performs a specific
task, usually a task which needs to be executed by different parts
of a program.

• Example:
– Math functions, such as square root

• Because a subroutine can be called from different places in a
program, you cannot get out of a subroutine with an instruction
such as

 jmp label

because you would need to jump to different places depending
upon which section of code called the subroutine.

• When you call a subroutine, your code saves the address where
the subroutine should return to. It does this by saving the return
address on the stack.

– This is done automatically for you when you get to the
subroutine by using the JSR (Jump to Subroutine) or BSR
(Branch to Subroutine) instruction. This instruction pushes
the address of the instruction following the JSR/BSR
instruction on the stack.

• After the subroutine is done executing its code it needs to return
to the address saved on the stack.

EE 308 Spring 2014

– This is done automatically for you when you return from
the subroutine by using the RTS (Return from Subroutine)
instruction. This instruction pulls the return address off of
the stack and loads it into the program counter, so the
program resumes execution of the program with the
instruction following that which called the subroutine.

The subroutine will probably need to use some MC9S12 registers
to do its work. However, the calling code may be using its registers
for some reason - the calling code may not work correctly if the
subroutine changes the values of the MCs9S12 registers.

– To avoid this problem, the subroutine should save the
MC9S12 registers before it uses them, and restore the
MC9S12 registers after it is done with them.

EE 308 Spring 2014

EE 308 Spring 2014

Example of a subroutine to delay for a certain amount of time

; Subroutine to wait for 100 ms
delay: ldaa #100 ; execute outer loop 100 times
loop2: ldx #8000 ; want inner loop to last 1ms
loop1: dbne x,loop1 ; inner loop – 3 cycles x 8000 times

 dbne a,loop2
rts

• Want inner loop to last for 1 ms. MC9S12 runs at 24,000,000
cycles/second, so 1 ms is 24,000 cycles.

• Inner loop should be 24,000 cycles/ (3 cycles/loop) = 8,000 loops
(times)

• Problem: The subroutine changes the values of registers A and X

• To solve this problem, save the values of A and X on the stack
before using them, and restore them before returning.

; Subroutine to wait for 100 ms
delay: psha ; save registers
 pshx

 ldaa #100 ; execute outer loop 100 times
loop2: ldx #8000 ; want inner loop to last 1ms
loop1: dbne x,loop1 ; inner loop – 3 cycles x 8000 times

 dbne a,loop2
pulx ; restore registers in opposite order

 pula
 rts

EE 308 Spring 2014

; Program to make a binary counter on LEDs
; The program uses a subroutine to insert a delay between counts
; Does not work on Dragon12-Plus. Need to write to PTJ to
; enable LEDs

prog: equ $2000
data: equ $1000
STACK: equ $2000
PORTB: equ $0001
DDRB: equ $0003

org prog

lds #STACK ; initialize stack pointer
ldaa #$ff ; put all ones into DDRB
staa DDRB ; to make PORTB output
clr PORTB ; put $00 into PORTB

loop: jsr delay ; wait a bit
inc PORTB ; add one to PORTB
bra loop ; repeat forever

; Subroutine to wait for a few milliseconds

delay: psha ; save registers
pshx
ldaa #100 ; Execute outer loop 100 times

loop2: ldx #8000 ; Want inner loop to last 1 ms
loop1: dbne x,loop1 ; Inner loop – 3 cyclesx8000 times

dbne a,loop2
pulx ; restore registers
pula
rts

EE 308 Spring 2014

Another example of using a subroutine

Using a subroutine to wait for an event to occur, then take an
action.

• Wait until bit 7 of address $00CC is set.

• Write the value in ACCA to address $00CF.

; This routine waits until the MC9S12 serial port is ready, then
; sends a byte of data to the MC9S12 serial port

putchar: brclr $00CC,#$80,putchar
staa $00CF
rts

• Program to send the word hello, world! to the MC9S12 serial port

; Program fragment to write the word “hello, world!” to the
; MC9S12 serial port

ldx #str
loop: ldaa 1,x+ ; get next char

beq done ; char == 0 => no more
jsr putchar
bra loop

done: swi

str: dc.b “hello, world!”
fc.b $0A,$0D,0 ; CR LF

EE 308 Spring 2014

Here is the complete program to write a message to the screen

prog: equ $2000
data: equ $1000
stack: equ $2000
SCI0SR1: equ $00CC ; SCI0 status reg 1
SCI0DRL: equ $00CF ; SCI0 data reg low

org prog

lds #stack
ldx #str

loop: ldaa 1,x+ ; get next char
beq done ; char == 0 ⇒ no more
jsr putchar
bra loop

done: swi

putchar: brclr SCI0SR1,$80,putchar ; check for SCI ready
staa SCI0DRL ; put character onto SCI

 ; port
rts

org data
str: fcc "hello, world"

dc.b $0a,$0d,0 ; LF CR terminating zero

EE 308 Spring 2014

Using DIP switches to get data into the MC9S12

• DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

• To use DIP switches, connect one end of each switch to a resistor

• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an
input port on the MC9S12.

• The Dragon12-Plus has eight DIP switches connected to Port H
(PTH)
(these switches have already resistors connected to them in the new
Dragon12-Plus).

EE 308 Spring 2014

Using DIP Switches

• When the switch is open, the input port sees a logic 1 (+5 V)

• When the switch is closed, the input sees a logic 0 (0 V)

EE 308 Spring 2014

Looking at the state of a few input pins

• Want to look for a particular pattern on 4 input pins

– For example want to do something if pattern on PH3-PH0
is 0110

• Don’t know or care what are on the other 4 pins (PH7-PH4)

• Here is the wrong way to doing it:

ldaa PTH
cmpa #$06
beq task

• If PH7-PH4 are anything other than 0000, you will not execute
the task.

• You need to mask out the Don’t Care bits before checking for
the pattern on the bits you are interested in

ldaa PTH
anda #%00001111
cmpa #%00000110
beq task

• Now, whatever pattern appears on PB7-4 is ignored

EE 308 Spring 2014

Using an MC9S12 output port to the 7-segment LEDs

• Each of the segments in the 7-segment LEDs are connected to an
output pin.

• To generate a pattern on each of the 7-segment LEDs, we need to
set to a logic 1 the LEDs connected to specific pins.

EE 308 Spring 2014

Making a pattern on a seven-segment LED

• Want to generate a particular pattern on a seven-segment LED:

• Determine a number (hex or binary) which will generate each
element of the pattern:

– For example, to display a 0, turn on segments a, b, c, d, e
and f, or bits 0, 1, 2, 3, 4 and 5 of PTB. The binary pattern is
0011 1111, or $3f.

– For example, to display a 2, turn on segments a, b, d, e and
g, or bits 0, 1, 3, 4, and 6 of PTB. The binary pattern is 0101
1011, or $5b.

– To display numbers 0 2 4 6 8 on the 4 7-segment LEDs, the
hex numbers are $3f, $5b, $66, $7d, $7f.

• Put the numbers in a table

• Go through the table one by one to display the pattern

• When you get to the last element, repeat the loop

EE 308 Spring 2014

Flowchart to display a pattern of lights on a set of LEDs

EE 308 Spring 2014

; Program to display a pattern or lights
; on a 7-segment display

prog: equ $2000
data: equ $1000
stack: equ $2000
PORTB: equ $0001
DDRB: equ $0003

org prog

lds #stack ; Initialize stack pointer
ldaa #$ff ; Make PTB output
staa DDRB ; 0xFF -> DDRB

l1: ldx #table ; Start pointer at table
l2: ldaa 1, x+ ; Get value; point to next

staa PORTB ; Update LEDs
jsr delay ; Wait a bit
cpx #table_end ; More to do?
bls l2 ; Yes, keep going through table
bra l1 ; At end; reset pointer

delay: psha ; save A and X registers onto the Stack
pshx
ldaa #100 ; loop 100 times the inner loop

loop2: ldx #8000 ; the inner loop takes 1 ms
loop1: dbne x,loop1

dbne a,loop2
pulx ; restore values of X and A registers
pula
rts ; return from the subroutine

EE 308 Spring 2014

 org data
table: dc.b $3f ; 0

 dc.b $5b ; 2
 dc.b $66 ; 4
 dc.b $7d ; 6

table_end: dc.b $7f ; 8

