
EE 308 Spring 2014

MC9S12 Built-In Hardware

• Here is some of the hardware available on the MC9S12DP256:

– General Purpose Input/Output (GPIO) Pins: These pins can
be used to read the logic level on a MC9S12 pin (input) or write a
logic level to an MC9S12 pin (output).

- Timer-Counter Pins: The MC9S12 is often used to time or
count events.

– Pulse Width Modulation (PWM) Pins: To make a motor turn
at a particular speed you need to send it a PWM signal.

– Serial Interfaces: Used to talk to other digital devices (such as
another computer) over a serial interface. The MC9S12 has two
serial interfaces:

*An asynchronous serial interface (Serial Communications
Interface, or SCI)
* A synchronous serial interface (Serial Peripheral Interface,
or SPI).

– Analog-to-Digital Converter (ADC): Useful to convert a
voltage to a digital number for use by the MC9S12.

EE 308 Spring 2014

Timer inside the MC9S12:

• When you enable the timer (by writing a 1 to bit 7 of TSCR1),
you connect a 24−MHz oscillator to a 16−bit counter.

You can read the counter at address TCNT.

• To put in a delay of 2.7307 ms, you could wait from one reading
of 0x0000 to the next reading of 0x0000.

• Problem: You cannot read the TCNT register quickly enough to
make sure you will see the 0x0000.

• Solution: The MC9S12 has built-in hardware which will set a
flip-flop every time the counter rolls over from 0xFFFF to 0x0000.

EE 308 Spring 2014

• Another problem: Sometimes you may want to delay longer
than 2.7307 ms, or time an event which takes longer than 2.7307
ms.

• Solution: The MC9S12 allows you to slow down the clock which
drives the counter.

• You can slow down the clock by dividing the 24 MHz clock by
2, 4, 8, 16, 32, 64 or 128. You do this by writing to the prescaler
bits (PR2:0) of the Timer System Control Register 2 (TSCR2).

What Happens When You Reset the MC9S12?

• What happens to the MC9S12 when you turn on power or push
the reset button?

• How does the MC9S12 know which instruction to execute first?

• On reset the MC9S12 loads the PC with the address located at
address 0xFFFE and 0xFFFF.

EE 308 Spring 2014

Introduction to Interrupts

What happens when HCS12 gets an interrupt: HCS12
automatically jumps to part of the program which tells it what to
do when it receives the interrupt (Interrupt Service Routine).

How does HCS12 know where the ISR is located: A set of
memory locations called Interrupt Vectors tell the HCS12 the
address of the ISR for each type of interrupt.

How does HCS12 know where to return to: Return address
pushed onto stack before HCS12 jumps to ISR. You use the RTI
(Return from Interrupt) instruction to pull the return address off of
the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed
onto stack before jumping to ISR, and pulled off the stack before
returning to program. When you execute the RTI instruction at the
end of the ISR, the registers are pulled off of the stack.

What happens if you get an interrupt while in an ISR: MC9S12
disables interrupts (sets I bit of CCR) before it starts executing
ISR.

To Return from the ISR You must return from the ISR using the
RTI instruction. The RTI instruction tells the HCS12 to pull all the
registers off of the stack and return to the address where it was
processing when the interrupt occurred.

EE 308 Spring 2014

How to generate an interrupt when the timer overflows

The Real Time Interrupt (RTI)

• Like the Timer Overflow Interrupt (TOF), the Real Time
Interrupt (RTI) allows you to interrupt the processor at a regular
interval.

EE 308 Spring 2014

• The specific interrupt mask for the Real Time Interrupt is the
RTIE bit of the CRGINT register.

• When the Real Time Interrupt occurs, the RTIF bit of the
CRGFLG register is set.

• To clear the Real Time Interrupt write a 1 to the RTIF bit of
the CRGFLG register.

• The interrupt rate is set by the RTR 6:4 and RTR 3:0 bits of the
RTICTL register. The RTR 6:4 bits are the Prescale Rate Select
bits for the RTI, and the RTR 2:0 bits are the Modulus Counter
Select bits to provide additional granularity.

• To use the Real Time Interrupt, set the rate by writing to the RTR
6:4 and the RTR 3:0 bits of the RTICTL, and enable the interrupt
by setting the RTIE bit of the CRGINT register

• The following table shows all possible values, in ms, selectable
by the RTICTL register (assuming the system uses a 8 MHz
oscillator):

EE 308 Spring 2014

The MC9S12 Output Compare Function

Want event to happen at a certain time?
Want to produce pulse with width T?

Wait until TCNT == 0x0000, then bring PA0 high
Wait until TCNT == T, then bring PA0 low

EE 308 Spring 2014

Problems:
1) May miss TCNT == 0x0000 or TCNT == T
2) Time not exact −− software delays
3) Cannot do anything else while waiting

Wait until TCNT == 0x0000, then bring PA0 high
Wait until TCNT == T, then bring PA0 low
Now pulse is exactly T cycles long

EE 308 Spring 2014

Output Compare PORT T 0−7

To use Output Compare, you must set IOSx to 1 in TIOS

EE 308 Spring 2014

Using Output Compare on the MC9S12

1. In the main program:

(a) Turn on timer subsystem (TSCR1 reg)
(b) Set prescaler (TSCR2 reg)
(c) Set up PTx as OC (TIOS reg)
(d)Set action on compare (TCTL 1-2 regs, OMx OLx bits)

(e) Clear Flag (TFLG1 reg)
(f) To use interrupts: Enable int (TIE reg)

2. In interrupt service routine

(a) Set time for next action to occur (write TCx reg)
• For periodic events add time to TCx register

(g) Clear flag (TFLG1 reg)

EE 308 Spring 2014

Capturing the Time of an External Event

Measure the time between two events

How to measure Δt?

Wait until signal goes low, then measure TCNT

• Two problems with this:
1. Cannot do anything else while waiting
2. Do not get exact time because of delays in software

EE 308 Spring 2014

• To solve problems use hardware which latches TCNT when
event occurs, and generates an interrupt.

Solution: Latch TCNT on falling edge of signal
Read latched values anytime later and get exact value
Can have MC9S12 generate interrupt when event
occurs, so can do other things while waiting

EE 308 Spring 2014

The MC9S12 Input Capture Function

Input Capture

Port T Pin x set up as Input Capture (IOSx = 0 in TIOS)

EE 308 Spring 2014

Using Input Capture on the MC9S12

To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 -> Bit 7 of TSCR1 reg)
2. Set prescaler (TSCR2 reg). To get most accuracy set overflow

rate as small as possible, but larger than the maximum time
difference you need to measure.

3. Set up PTx as IC (0 -> bit x of TIOS reg)
4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

5. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of
TFLG1)
6. If using interrupts

(a) Enable interrupt on channel x (1 -> bit x of TIE reg)
(b) Clear I bit of CCR (cli or enable())
(c) In interrupt service routine,

i. Read time of edge from TCx
ii. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other
bits of TFLG1)

7. If polling in main program
(a) Wait for Bit x of TFLG1 to become set
(b) Read time of edge from TCx
(c) Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of
TFLG1)

EE 308 Spring 2014

Using the MC9S12 PWM Function

Want a Pulse Width Modulated signal
Want to produce pulse with width dT, period T

• Because PWM is used so often the MC9S12 has a built-in PWM
system

•The MC9S12 PWM does not use interrupts

• The PWM system on the MC9S12 is very flexible

• There are 33 registers used by the PWM subsystem

• You don’t need to work with all 33 registers to activate PWM

• To select 8-bit mode, write a 0 to Bits 7, 6, 5 and 4 of PWMCTL
register (no 16 concatenation).

• To select left-aligned mode, write 0x00 to PWMCAE.

• To select high polarity mode, write a 0xFF to PWMPOL register.

EE 308 Spring 2014

Clock Select for PWM Channel 0

EE 308 Spring 2014

Using the HCS12 PWM

1. Choose 8-bit mode (PWMCTL = 0x00)
2. Choose high polarity (PWMPOL = 0xFF)
3. Choose left-aligned (PWMCAE = 0x00)
4. Select clock mode in PWMCLK:

• PCLKn = 0 for 2N,
• PCLKn = 1 for 2(N+1) ×M,

5. Select N in PWMPRCLK register:
• PCKA for channels 5, 4, 1, 0;
• PCKB for channels 7, 6, 3, 2.

6. If PCLKn = 1, select M
• PWMSCLA = M for channels 5, 4, 1, 0
• PWMSCLB = M for channels 7, 6, 3, 2.

7. Select PWMPERn, normally between 100 and 255.
8. Enable desired PWM channels: PWME.
9. Select PWMDTYn, normally between 0 and PWMPERn. Then

Duty Cycle n = (PWMDTYn / PWMPERn) × 100%
Change duty cycle to control speed of motor or intensity of
light, etc.

10. For 0% duty cycle, choose PWMDTYn = 0x00.

EE 308 Spring 2014

MC9S12 Analog/Digital Converter

• The MC9S12 has two 10-bit A/D converters (ATD0 and ATD1).

• ATD0 uses the eight bits of Port AD0, called PAD00 through
PAD07

• ATD1 uses the eight bits of Port AD1, called PAD08 through
PAD15

• A 10-bit A/D converter is used to convert an input voltage. The
reference voltages are VRL = 0V and VRH = 5V.

– What is the quantization level of the A/D converter?

 ΔV = (VRH − VRL)/(2b -1) = 4.88 mV

• If the value read from the A/D converter is 0x15A, what is the
input voltage?

Vin = VRL + [(VRH − VRL)/(2b-1)]*ADvalue = 0 V + 4.88 mV
× 346 = 1.6894 V

EE 308 Spring 2014

Using the HCS12 A/D converter

1. Power up A/D Converter (Bit 7 -> 1 in ATD0CTL2)
2. Select number of conversions per sequence (Bits 3,4,5,6 of
ATD0CTL3)

S8C S4C S2C S1C = 0001 to 0111 for 1 to 7 conversions
S8C S4C S2C S1C = 0000 or 1xxx for 8 conversions

3. Set up ATD0CTL4
• For 8-bit mode write 0x85 to ATD0CTL4
• For 10-bit mode write 0x05 to ATD0CTL4
• Other values of ATD0CTL4 either will not work or will
result in slower A/D conversion rates

4. Select DJM, Bit 7 of ATD0CTL5
(a) DJM = 0 => Left justified data in the result registers
(b) DJM = 1 => Right justified data in the result registers

5. Select DSGN, Bit 6 of ATD0CTL5
(a) DSGN = 0 => Unsigned data representation in the

result register
(b) DSGN = 1 => Signed data representation in the result

register
6. Select MULT, Bit 4 of ATD0CTL5:

• MULT = 0: Convert one channel the specified number of
 times

– Choose channel to convert with CC, CB, CA of
ATD0CTL5.

• MULT = 1: Convert across several channels. CC, CB, CA
of ATD0CTL is the first channel to be converted.

7. Select SCAN, Bit 5 of ATD0CTL5:
• SCAN = 0: Convert one sequence, then stop
• SCAN = 1: Convert continuously

EE 308 Spring 2014

8. After writing to ATD0CTL5, the A/D converter starts, and the
SCF, Bit 7 of ATD0STAT0, is cleared. After a sequence of
conversions is completed, the SCF flag in ATD0STAT0 is set.

• You can read the results in ATD0DRxH.
9. If SCAN = 0, you need to write to ATD0CTL5 to start a new
sequence. If SCAN = 1, the conversions continue automatically,
and you can read new values in ATD0DRxH.
10. To get an interrupt after the sequence of conversions are
completed, set ASCIE bit of ATD0CTL2. After the sequence of
conversions, the ASCIF bit in ATD0CTL2 will be set, and an
interrupt will be generated.
11. With 24 MHz bus clock and ATD0CTL4 = 0x05, it takes 7 μs
to make one conversion, 56 μs to make eight conversions.
12. The conversion from Volts to Digital Values is

ATD0DRx =(Vin − VRL)/(VRH − VRL) × 1024. Normally,
VRL = 0 V, and VRH = 5 V, so ATD0DRx =Vin/5 V × 1024

14. To use 10-bit result, set ATD0CTL4 = 0x05 (Gives 2 MHz AD
clock with 24 MHz bus clock, 10-bit mode).

EE 308 Spring 2014

The HCS12 IIC Interface

• A popular synchronous serial interface is the Inter-Integrated
Circuit (IIC or I2C) bus

– The IIC bus can control multiple devices using only two
wires
– The two wires are Clock and Data
*The devices connect to the wires using a wired AND method
* The lines are normally high. Any device on the bus can
 bring them low.

– Each device on the bus has a unique address.

– An IIC master starts the process by sending out a serial
stream with the seven-bit address of the slave it wants to talk
to, and an eight bit indicating if it wants to write to the slave
or read from the slave.

EE 308 Spring 2014

The IIC Interface

EE 308 Spring 2014

Using the IIC Interface on the MC9S12

• The IIC uses five registers

1. IBAD (IIC Bus Address Register). This is the address of the IIC
when it is addressed as a slave.

2. IBFD (IIC Bus Frequency Divide Register). This register
determines the speed of the transfers. Table 3-4 of the data sheet
shows what the divide times and hold times are for all possible
values of IBFD.

3. IBCR (IIC Bus Control Register) This register controls the IIC.
– IBEN: Enable the IIC Bus
– IBIE: Enable interrupts
– MS/SL: Switch into master mode
– Tx/Rx: Switch between transmit and receive
– TXAK: Send an acknowledge

4. IBSR (IIC Bus Status Register). This register indicates the
status of the IIC, and is used to clear interrupts bits.

– TCF: Transmit complete flag. Interrupt generated when
TCF goes from low to high when IBEN is set.
– IAAS: Addressed as slave
– IBB: IIC Bus Busy
– IBAL: Arbitration lost
– SRW: Slave read/write
– IBIF: Interrupt flag. Set when arbitration is lost. Clear by
writing a 1 to this bit
– RXAK: Received Acknowledge

EE 308 Spring 2014

5. IBDR (IIC Bus Data Register)
– For both write to and read from the slave. First write to
IBDR must be slave address plus R/W bit.
– Write data to this register to send to slave
– Read data from this register to receive from slave

