
EE 308 Spring 2015

 An Example of Using the Stack
 Introduction to Programming the MC9S12 in C

o An example of using the stack
o Including hcs12.inc in assembly language programs
o Using a mask in assembly language programs
o Using the DIP switches on the Dragon12
o Putting a program into the MC9S12 EEPROM
o Displaying patterns from a table on the Dragon12 LEDs
o Comparison of C and Assembly language programs

EE 308 Spring 2015

Examples of Using the Stack

Consider the following:

2000 org $2000
2000 cf 20 00 lds #$2000
2003 ce 01 23 ldx #$0123
2006 cc ab cd ldd #$abcd
2009 34 pshx
200a 36 psha
200b 37 pshb
200c 07 04 bsr delay
200e 33 pulb
200f 32 pula
2010 30 pulx
2011 3f swi

2012 34 delay: pshx
2013 ce 03 e8 ldx #1000
2016 04 35 fd loop: dbne x,loop
2019 30 pulx
201a 3d rts

EE 308 Spring 2015

The following does not work; the RTS goes to the wrong place

2000 org $2000
2000 cf 20 00 lds #$2000
2003 ce 01 23 ldx #$0123
2006 cc ab cd ldd #$abcd
2009 34 pshx
200a 36 psha
200b 37 pshb
200c 07 04 bsr delay
200e 33 pulb
200f 32 pula
2010 30 pulx
2011 3f swi

2012 34 delay: pshx
2013 ce 03 e8 ldx #1000
2016 04 35 fd loop: dbne x,loop
2019 3d rts

EE 308 Spring 2015

Using Registers in Assembly Language

• The DP256 version of the MC9S12 has lots of hardware registers

• To use a register, you can use something like the following:

PORTB equ $0001

• It is not practical to memorize the addresses of all the registers

• Better practice: Use a file which has all the register names with
their addresses

include "hcs12.inc"

• Here is some of hcs12.inc
;

*
; Prepared by Dr. Han-Way Huang
; Date: 12/31/2004
; HC12SDP256 I/O register locations
; HCS12 peripheral bits definitions
; D-Bug12 I/O functions calling address
; D-Bug12 SRAM interrupt vector table
; Flash and EEPROM commands
;

*

PORTA equ 0 ; port a = address lines a8 - a15
PTA equ 0 ; alternate name for PORTA
PORTB equ 1 ; port b = address lines a0 - a7
PTB equ 1 ; alternate name for PORTB
DDRA equ 2 ; port a direction register
DDRB equ 3 ; port a direction register

EE 308 Spring 2015

Using DIP switches to get data into the MC9S12

• DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

• To use DIP switches, connect one end of each switch to a resistor

• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an
input port on the MC9S12

• The Dragon12-Plus has eight dip switches connected to Port H
(PTH)

• The four least significant bits of PTH are also connected to push-
button switches.

EE 308 Spring 2015

- If you want to use the push-button switches, make sure the
DIP switches are in the OFF position.

• When the switch is open, the input port sees a logic 1 (+5 V)

• When the switch is closed, the input sees a logic 0 (0.22 V)

EE 308 Spring 2015

Looking at the state of a few input pins

• Want to look for a particular pattern on 4 input pins

– For example want to do something if pattern on PH3-PH0
is 0110

• Don’t know or care what are on the other 4 pins (PH7-PH4)

• Here is the wrong way to do it:

ldaa PTH
cmpa #$06
beq task

• If PH7-PH4 are anything other than 0000, you will not execute
the task.

• You need to mask out the Don’t Care bits before checking for the
pattern on the bits you are interested in

– To mask out don’t care bits, AND the bits with a mask
which has 0’s in the don’t care bits and 1’s in the bits you
want to look at.

ldaa PTH
anda #$0F
cmpa #$06
beq task

• Now, whatever pattern appears on PH7-4 is ignored

EE 308 Spring 2015

Using an HC12 output port to control an LED

• Connect an output port from the HC12 to an LED.

EE 308 Spring 2015

Making a pattern on a seven-segment LED

• Want to generate a particular pattern on a seven-segment LED:

• Determine a number (hex or binary) which will generate each
element of the pattern

– For example, to display a 0, turn on segments a, b, c, d, e
and f, or bits 0, 1, 2, 3, 4 and 5 of PTH. The binary pattern is
0011 1111, or $3f.

– To display 0 2 4 6 8, the hex numbers are $3f, $5b, $66,
$7d, $7f.

• Put the numbers in a table

• Go through the table one by one to display the pattern

• When you get to the last element, repeat the loop

EE 308 Spring 2015

as12, an absolute assembler for Motorola MCU’s, version 1.2h

; Program to display a pattern on a seven-segment LED display

include "hcs12.inc"
2000 prog: equ $2000
1000 data: equ $1000
2000 stack: equ $2000

0005 table_len: equ (table_end-table)

2000 org prog
2000 cf 20 00 lds #stack ; initialize stack pointer
2003 86 ff ldaa #$ff ; Make PORTB output
2005 5a 03 staa DDRB ; 0xFF -> DDRB
2007 ce 10 00 l1: ldx #table ; Start pointer at table
200a a6 00 l2: ldaa 0,x ; Get value
200c 5a 01 staa PORTB ; Update LEDs
200e 07 08 bsr delay ; Wait a bit
2010 08 inx ; point to next
2011 8e 10 05 cpx #table_end ; More to do?
2014 25 f4 blo l2 ; Keep going through table
2016 20 ef bra l1 ; At end; reset pointer

2018 36 delay: psha
2019 34 pshx
201a 86 64 ldaa #100
201c ce 1f 40 loop2: ldx #8000
201f 04 35 fd loop1: dbne x,loop1
2022 04 30 f7 dbne a,loop2
2025 30 pulx
2026 32 pula
2027 3d rts

1000 org data
1000 3f table: dc.b $3f
1001 5b dc.b $5b
1002 66 dc.b $66
1003 7d dc.b $7d
1004 7f dc.b $7F
1005 table_end:

EE 308 Spring 2015

Putting a program into EEPROM on the Dragon12-Plus

• EEPROM from 0x400 to 0xFFF

• Program will stay in EEPROM memory even after power cycle

– Data will not stay in RAM memory (!)

• If you put the above program into EEPROM, then cycle power,
you will display a sequence of patterns on the seven-segment LED,
but the pattern will be whatever junk happens to be in RAM.

• To make sure you retain your patterns, put the table in the text
part of your program, not the data part.

• If you use a variable which needs to be stored in data, be sure you
initialize that variable in your program and not by using dc.b.

• The Dragon12 board uses an 8 MHz clock. The MC9S12 has an
internal phase-locked loop which can change the clock speed.
DBug12 increases the clock speed from 8 MHz to 48 MHz.

• When you run a program from EEPROM, DBug12 does not run,
so your program will run six times slower that it would using
DBug12. The lab has instructions on how to increase the MC9S12
clock from 8 MHz to 48 MHz so your program will run with the
same speed as under DBug12.

EE 308 Spring 2015

EE 308 Spring 2015

• Here is the above program with table put into EEPROM

• Also, we have included a variable var which we initialize to $aa
in the program

– We don’t use var in the program, but included it to
show you how to use a RAM-based variable

–

include "hcs12.inc"
prog: equ $0400
data: equ $1000
stack: equ $2000
table_len: equ (table_end-table)

org prog
lds #stack ; initialize stack pointer
movb #$aa,var ; initialize var
ldaa #$ff ; Make PORTB output
staa DDRB ; 0xFF -> DDRB

l1: ldx #table ; Start pointer at table
l2: ldaa 0,x ; Get value

staa PORTB ; Update LEDs
bsr delay ; Wait a bit
inx ; point to next
cpx #table_end ; More to do?
blo l2 ; Yes, keep going through table
bra l1 ; At end; reset pointer

delay: psha
pshx
ldaa #100

loop2: ldx #8000
loop1: dbne x,loop1

dbne a,loop2
pulx
pula
rts

EE 308 Spring 2015

table: dc.b $3f
dc.b $5b
dc.b $66
dc.b $7d
dc.b $7F

table_end:

org data
var: ds.b 1 ; Reserve one byte for var

EE 308 Spring 2015

Programming the MC9S12 in C

• A comparison of some assembly language and C constructs

Assembly C

; Use a name instead of a num /* Use a name instead of a num */
COUNT: EQU 5 #define COUNT 5
;--- /*-----------------------------*/
;start a program /* To start a program */

org $1000 main()
lds #$3C00 {

 }
;--- /*-----------------------------*/

• Note that in C, the starting location of the program is defined when you
compile the program, not in the program itself.

• Note that C always uses the stack, so C automatically loads the stack
pointer for you.

Assembly C

; allocate two bytes for /* Allocate two bytes for
; a signed number * a signed number */

 org $2000

i: ds.w 1 int i;
j: dc.w $1A00 int j = 0x1a00;

EE 308 Spring 2015

Assembly C

;-- /*-----------------------------*/
; allocate two bytes for /* Allocate two bytes for
; an unsigned number * an unsigned number */

i: ds.w 1 unsigned int i;
j: dc.w $1A00 unsigned int j = 0x1a00;

; allocate one byte for /* Allocate one byte for */
; a signed number /* a signed number */

i: ds.b 1 signed char i;
j: dc.b $1F signed char j = 0x1f;

;--- /*-----------------------------*/
; Get a value from an address /* Get a value from an address */
; Put contents of address /* Put contents of address */
; $E000 into variable i /* 0xE000 into variable i */

i: ds.b 1 unsigned char i;

ldaa $E000 i = * (unsigned char *) 0xE000;
staa i

 /*-----------------------------------*/
 /* Use a variable as a pointer
 (address) */

 unsigned char *ptr, i;

 ptr = (unsigned char *) 0xE000;

 i = *ptr;

EE 308 Spring 2015

• In C, the construct *(num) says to treat num as an address, and to
work with the contents of that address.

• Because C does not know how many bytes from that address you
want to work with, you need to tell C how many bytes you want to
work with. You also have to tell C whether you want to treat the
data as signed or unsigned.

 i = * (unsigned char *) 0xE000; tells C to take one byte
from address 0xE000, treat it as unsigned, and store that
value in variable i.

 j = * (int *) 0xE000; tells C to take two bytes from address
0xE000, treat it as signed, and store that value in variable j.

 * (char *) 0xE000 = 0xaa; tells C to write the number 0xaa
to a single byte at addess 0xE000.

 * (int *) 0xE000 = 0xaa; tells C to write the number 0x00aa
to two bytes starting at address 0xE000.

EE 308 Spring 2015

Assembly C

;--------------------------------- /*-----------------------------*/
; To call a subroutine /* To call a function */

ldaa i sqrt(i);
jsr sqrt

;-------------------------------- /*-----------------------------*/
; To return from a subroutine /* To return from a function */

ldaa j return j;
rts

;-------------------------------- /*-----------------------------*/
; Flow control /* Flow control */

blo if (i < j)
blt if (i < j)

bhs if (i >= j)
bge if (i >= j)

;--------------------------------- /*-----------------------------*/

EE 308 Spring 2015

• Here is a simple program written in C and assembly. It simply
divides 16 by 2. It does the division in a function.

Assembly C

org $1000 unsigned char i;
i: ds.b 1

 unsigned char div(unsigned char j);

org $2000 main()
lds #$3C00 {
ldaa #16 i = div(16);
jsr div }
staa i
swi

div: asra unsigned char div(unsigned char j)

rts {
 return j >> 1;
 }

