
EE 308 Spring 2015

 Using the MC9S12 IIC Bus with DS 1307 Real Time
Clock

 IIC Block User Guide
 DS1307 Data Sheet

o The IIC bus on the MC9S12
o MC9S12 registers used with the IIC bus
o How to write data to slave and read data from a salve
o The DS 1307 Real Time Clock

The MC9S12 IIC Interface

• The IIC bus can control multiple devices using only two wires

– The two wires are Clock and Data
– The devices connect to the wires using a wired AND
method
– The lines are normally high. Any device on the bus can
bring them low.

• Each device on the bus has a unique address

• An IIC master starts the process by sending out a serial stream
with the seven-bit address of the slave it wants to talk to, and an
eighth bit indicating if it wants to write to the slave or read from
the slave

• If it writes to the slave, it will continue sending data on the serial
data line until all the data is sent.

EE 308 Spring 2015

• If it reads from the slave, it will release the data line, and
activates the clock line. The slave takes over the data line, and
sends out its data in response to the clock provided by the master.

• After all the data is transferred, the master releases both the clock
and the data lines

EE 308 Spring 2015

The IIC Interface

• Normally, both SDA and SCL are high.

• When transmitting data, SDA changes only when SCL is low.

• When the master wants to talk to a slave, it brings SDA low while
SCL is high (the Start condition). This gives the master control of
the bus

• The master sends eight bits of data on the SDA bus, and toggles
the SCL bus for each bit. The eight bits are the seven-bit address of
the slave, and one bit for read-write

– A low indicates a write, and a high indicates a read. After
the eighth data bit, the master releases the SDA line.
– There is a ten-bit address mode discussed in the text, which
we will not discuss

• The master releases the SDA bus and sends a ninth clock pulse.
The addressed slave responds with an acknowledge by bringing
SDA low.

 – If no slave responds, master knows not to continue

• It the master is reading data from the slave, it controls the SCL
line and the slave controls the SDA line. The master sends eight
clock pulses on the SCL line, and the slave transfers one bit of data
on each clock pulse. At the end of the eight bits, the master takes
over the SDA bus and sends an acknowledge (ACK) on all but the
last byte it wants. After the last byte the master wants, the master
sends an NACK (leaves SDA high).

EE 308 Spring 2015

• If the master is writing data to the slave, it continues controlling
both SDA and SCL. It sends eight bits of data, releases SDA, and
waits for an acknowledge from the slave

• After the transfer is complete (for both read and write), the master
sends a Stop condition to indicate that it is releasing the bus. The
Stop condition is indicated by bringing SDA high while SCL is
high.

EE 308 Spring 2015

Using the IIC Interface on the MC9S12

• The IIC uses five registers

1. IBAD (IIC Bus Address Register)
This is the address of the IIC when it is addressed as a slave. We
will use the IIC in master mode only. Write something like 0x01 to
this register (any address will work, as long as it is not the address
of a slave on the bus).

2. IBFD (IIC Bus Frequency Divide Register)
This register determines the speed of the transfers. It also
determines the hold times for start and stop conditions. Table 3-4
of the data sheet shows what the divide times and hold times are
for all possible values of IBFD. The SCL Divider is the most
important. If the slave device has a maximum frequency of 100
kHz, then 24 MHz/100 KHz = 240, so the SCL Divider must be
greater than or equal to 240. Looking at the table, a value of 0x23
will give a divider of 256, so that is the one to use.

EE 308 Spring 2015

3. IBCR (IIC Bus Control Register)
This register controls the IIC.

– IBEN: Enable the IIC Bus
– IBIE: Enable interrupts
– MS/SL: Switch into master mode
– Tx/Rx: Switch between transmit and receive
– TXAK: Send an acknowledge
– RSTA: Send a restart
– IBSWAI: Specify whether or not the IIC clock should
operate in WAIT mode

4. IBSR (IIC Bus Status Register)
This register indicates the status of the IIC, and is used to clear
interrupts bits.

– TCF: Transmit complete flag. Interrupt generated when
TCF goes from low to high when IBEN is set.

EE 308 Spring 2015

– IAAS: Addressed as slave
– IBB: IIC Bus Busy
– IBAL: Arbitration lost
– SRW: Slave read/write
– IBIF: Interrupt flag. Set when arbitration is lost. Clear by
writing a 1 to this bit
– RXAK: Received Acknowledge

5. IBDR (IIC Bus Data Register)

– For both write to and read from the slave. First write to
IBDR must be slave address plus R/W bit.
– Write data to this register to send to slave
– Read data from this register to receive from slave

EE 308 Spring 2015

Using the IIC Bus in Master Mode

To use the IIC bus in master mode, do the following:

• Initialize the IIC Bus. Write to the IBFD register to set the clock
speed, write to the IBAD register to set a slave address, and write
to the IBCR register to enable the IIC bus:

IBFD = 0x23; // Set to 100 KHz operation
IBAD = 0x01; // Slave address 1
IBCR = IBCR | BIT7; // Set IBEN

• To write data to a slave:

– Make sure the bus is not busy
– Write to IBCR to enable XMIT and MASTER. The
MC9S12 automatically emits a start condition when you do
this.
– Send data word which contains the device address and
indicates a write
– Wait for the transfer to complete
– Make sure ACK received from slave. (If not, do something
reasonable)
– Send data, wait for ACK, repeat until all data sent

EE 308 Spring 2015

– After all data sent, send a stop condition by taking MC9S12
out of master mode.

// Write data to device with address 0x68
while ((IBSR & BIT5) == BIT5) ; // Wait for IBB flag to clear
IBCR = IBCR | BIT4 | BIT5; // Set XMIT and MASTER

// mode, emit start
IBDR = 0xD0; // Send device address,

// R/W bit = 0 => write
while ((IBSR & BIT5) == 0) ; // Wait for IBB flag to set
while ((IBSR & BIT1) == 0) ; // Wait for IBIF to set,

// indicating end transfer
IBSR = BIT1; // Clear IBIF
if ((IBSR & BIT0) == BIT0) iic_stop(); // Do something if no

// slave answers
... // Repeat for more data

IBCR = IBCR & ~BIT5; // Done; generate stop
// signal

EE 308 Spring 2015

Program to write data to an IIC slave

#include "hcs12.h"

void iic_init(void);
void iic_start(char address);
void iic_response(void);
void iic_stop(void);
void iic_transmit(char data);

main()
{

/* Write to RTC */
iic_init();
iic_start(0xD0);
while ((IBCR & BIT5) == 0) // Make sure we still own

// bus
iic_transmit(0);
while ((IBCR & BIT5) == 0) ; // Make sure we still own

// bus
... // Transmit more data
iic_stop();
asm(" swi");

}

void iic_init(void)
{

IBFD = 0x23; // Set to 100 KHz operation
IBAD = 0x02; // Slave address 1
IBCR = IBCR | BIT7; // Set IBEN to enable IIC

// bus
}

EE 308 Spring 2015

void iic_start(char address)
{

while ((IBSR & BIT5) == BIT5) ; // Wait for IBB flag
// to clear

IBCR = IBCR | BIT4 | BIT5; // Set XMIT and
// MASTER mode,
// emit start

IBDR = address; // Send device
// address and R/W bit

while ((IBSR & BIT5) == 0) ; // Wait for IBB flag to
// set

iic_response(); // Wait for response
}

void iic_response(void)
{

while ((IBSR & BIT1) == 0) ; // Wait for IBIF to set
IBSR = BIT1; // Clear IBIF
if ((IBSR & BIT0) == BIT0) iic_stop(); // Stop if NAK
// DB12FNP->printf("In iic_response: ACK received\n\r");

}

/* Release bus and stop (only if transmitting */
void iic_stop(void)
{

IBCR = IBCR & ~BIT5;
}

EE 308 Spring 2015

void iic_transmit(char data)
{

IBDR = data; // Write data to device
iic_response(); // Wait for response

}

EE 308 Spring 2015

Dallas Semiconductor DS1307 Real Time Clock

• The DS 1307 is a real-time clock with 56 bytes of NV (non-
volatile) RAM

• It uses the IIC bus, with address 011010002

• It stores date and time

– Data are stored in BCD format

• It uses a 32.768 kHz crystal to keep time

• It can generate a square wave output

– Frequency of square wave can be 1 Hz, 4.096 kHz, 8.192
kHz or 32.768 kHz

• It uses a battery to hold the date and time when your board is not
powered

EE 308 Spring 2015

Using the Dallas Semiconductor DS1307 Real Time Clock

• Find the SCL frequency

• Determine the value to write to IBFD to get that frequency or
slower

• Make sure start condition and stop condition times met

• To set the clock, write address to clock (with R/W low), then
write a 0 (to select seconds register), then send second, minute,
hour, day of week, day of month, month, year, control

– Control determines whether or not to enable square wave,
and selects frequency

• To read the clock, write the address to the clock (with R/ W low),
then write a 0 (to select seconds register). After that, write the
address to the clock (with R/ W high), then read the time
information.

• If you want to store some data which will remain between power
cycles, you can write it to the 56 bytes of NV RAM.

EE 308 Spring 2015

EE 308 Spring 2015

X1,X2: Connections for Standard 32.768kHz Quartz Crystal
VBAT : Backup Supply Input for Any Standard 3V Lithium Cell or
Other Energy Source
SDA: The SDA pin is open drain and requires an external pull-up
resistor
SCL: The pull-up voltage can be up to 5.5V regardless of the
voltage on VCC.

