
EE 308 Spring 2015

 Using the MC9S12 IIC Bus with DS 1307 Real Time
Clock

 DS1307 Data Sheet
 Asynchronous Serial Communications
 The MC9S12 Serial Communications Interface (SCI)

Dallas Semiconductor DS1307 Real Time Clock

• The DS 1307 is a real-time clock with 56 bytes of NV (non-
volatile) RAM

• It uses the IIC bus, with address 11010002

• It stores date and time

– Data are stored in BCD format

• It uses a 32.768 kHz crystal to keep time

• It can generate a square wave output

– Frequency of square wave can be 1 Hz, 4.096 kHz, 8.192
kHz or 32.768 kHz

• It uses a battery to hold the date and time when your board is not
powered

EE 308 Spring 2015

Using the Dallas Semiconductor DS1307 Real Time Clock

• Set up the IIC bus

– Find the Serial Clock Line (SCL) frequency, Serial Data
line (SDA) hold time, Start and Stop hold times
– Determine the value to write to IIC Bus Frequency Divider
Register (IBFD) to meet those times

• To set the time,

– Send the Start condition
– Write address of clock (with R/Ŵ low)
– Write a 0 (to select seconds register),
– Write second, minute, hour, day of week, day of month,
month, year, control

 Control determines whether or not to enable square
wave, and selects frequency

– Send the Stop condition

• To read the clock,
– Send the Start condition
– Write the address of the clock (with R/Ŵ low), then write a
0 (to select seconds register).
– Send the Stop condition
– Send the Start condition
– Write the address of the clock (with R/Ŵ high for reading)
– Read the time registers.
– Send the Stop condition

EE 308 Spring 2015

• If you want to store some data which will remain
between power cycles, you can write it to the 56 bytes
of NV RAM

Lab on IIC Bus

•Lab on the IIC Bus
1. Communicate with Dallas Semiconductor DS 1307 Real
Time Clock

(a) Set time and date in clock
(b) Read time and date from clock and display

2. Display time and date on LCD display

• Hardest program this semester

• Need to use functions

• How to write to LCD display discussed in a previous class notes

char msg[] = "hello, world!";
openlcd();
while (1) {

msg1 = "...";
put2lcd(0x80,CMD); // Move to first line
puts2lcd(msg1);
msg2 = "...";
put2lcd(0xC0,CMD); // Move to second line
puts2lcd(msg2);

}

• Need C functions to write to and read from RTC over the IIC bus

EE 308 Spring 2015

• Need C functions to initialize IIC bus (iic_init()), start a transfer
by writing address and R/Wbit (iic_start()), transmit a byte of data
(iic_transmit()), and stop the transfer (release IIC bus, iic_stop()).

• Need C functions to switch to receive mode (iic_swrcv()) and
receive data over IIC bus (iic_receive).

• Need to put functions together to write to the RTC, read from the
RTC, and display the time/date on the LCD display

• To write data to LCD display, data has to be in the form of an
ASCII string

• Data from RTC is in form of BCD data

EE 308 Spring 2015

Lab on IIC Bus

• To read data from RTC, need to do the following:
– Put IIC bus into transmit mode, send START condition,
send slave address (with R/W = 0), then send address of first
register to read.
– Put IIC bus into transmit mode, send START condition,
send slave address (with R/W = 1), switch to receive mode,
read dummy byte from IBDR to start IIC clock, then receive
data.

• Need function iic_swrcv() to switch from transmit to receive
mode, and read dummy byte from IBDR.

• When receiving multiple bytes from slave, need to send NACK
after last byte in order to tell slave to release bus.

– If you don’t do this, slave will hold onto bus, and you
cannot take over bus for next operation

• We have to have three receive functions:

1. iic_receive(): Used for receiving all but last two bytes
– Waits for IBIF flag to set, indicating new data
– Clears IBIF after it has been set
– Reads data from IBDR, which starts next read

2. iic_receive_m1(): Used for receiving next to last byte
– Waits for IBIF flag to set, indicating new data
– Clears IBIF after it has been set
– Sets TXAK bit so there will be no ACK sent on
reading the last byte
– Reads data from IBDR, which starts next read

EE 308 Spring 2015

3. iic_receive_last(): Used for receiving last byte
– Waits for IBIF flag to set, indicating new data
– Clears IBIF after it has been set
– Clears TXAK bit so ACK is re-enabled
– Clears MS/SL bit to generate a STOP bit after this
transfer is complete
– Sets Tx/Rx bit so MC9S12 will not start SCLK to
receive another byte after reading from IBDR.
– Reads data from IBDR

EE 308 Spring 2015

Asynchronous Data Transfer

• In asynchronous data transfer, there is no clock line between the
two devices

• Both devices use internal clocks with the same frequency

• Both devices agree on how many data bits are in one data transfer
(usually 8, sometimes 9)

• A device sends data over an TxD line, and receives data over an
RxD line

– The transmitting device transmits a special bit (the start bit)
to indicate the start of a transfer
– The transmitting device sends the requisite number of data
bits
– The transmitting device ends the data transfer with a special
bit (the stop bit)

• The start bit and the stop bit are used to synchronize the data
transfer

EE 308 Spring 2015

EE 308 Spring 2015

Asynchronous Data Transfer

• The receiver knows when new data is coming by looking for the
start bit (digital 0 on the RxD line).

• After receiving the start bit, the receiver looks for 8 data bits,
followed by a stop bit (digital high on the RxD line).

• If the receiver does not see a stop bit at the correct time, it sets
the Framing Error bit in the status register.

• Transmitter and receiver use the same internal clock rate, called
the Baud Rate.

• At 9600 baud (the speed used by D-Bug12), it takes 1/9600
seconds for one bit, for a total of 10/9600 seconds, or 1.04 ms, for
one byte.

EE 308 Spring 2015

Asynchronous Serial Protocols

• The SCI interface on the MC9S12 uses voltage levels of 0 V and
+5 V. The RS-232 standard uses voltage levels of +12 V and -12 V.

– The Dragon12-Plus board uses a Maxim MAX232A chip to
shift the TTL levels from the MC9S12 to the RS-232 levels
necessary for connecting to a standard serial port. 0 V from
the SCI is converted to +12 V on the DB-9 connector and +5
V from the SCI is converted to -12 V on the DB-9 connector.
– The RS-232 standard can work on cables up to a length of
50 feet.

• Another asynchronous standard is RS-485. Dragon12-Plus board
can use SCI1 in RS-485 mode

– RS-485 is a two-wire differential asynchronous protocol
– Multiple devices can connect to the same two wires
– Only one device on the RS-485 bus can transmit; all the
other devices are in receive mode
– The Dragon12-Plus uses DS75176 differential-to-single
ended converter to convert the single-ended SCI1 data to
differential RS-485 data
– Bit 0 of Port J determines if the RS-485 should be in
receive mode or transmit mode
– RS-485 can work with cables up to a length of 1,000 feet.

EE 308 Spring 2015

Parity in Asynchronous Serial Transfers

• The HCS12 can use a parity bit for error detection.
– When enabled in SCI0CR1, the parity function uses the
most significant bit for parity.

– There are two types of parity – even parity and odd parity
* With even parity, and even number of ones in the data
clears the parity bit; an odd number of ones sets the
parity bit. The data transmitted will always have an
even number of ones.
* With odd parity, and odd number of ones in the data
clears the parity bit; an even number of ones sets the
parity bit. The data transmitted will always have an odd
number of ones.

– The HCS12 can transmit either 8 bits or 9 bits on a single
transfer, depending on the state of M bit of SCI0CR1.

– With 8 data bits and parity disabled, all eight bits of the
byte will be sent.

– With 8 data bits and parity enabled, the seven least
significant bits of the byte are sent; the MSB is replaced with
a parity bit.

– With 9 data bits and parity disabled, all eight bits of the
byte are sent , and an additional bit can be sent in the sixth bit
of SCI0DRH.

* It usually does not make sense to use 9 bit mode
without parity.

EE 308 Spring 2015

– With 9 data bits and parity enabled, all eight bits of the byte
are sent; the ninth bit is the parity bit, which is put into the
MSB of SCI0DRH in the receiver.

Asynchronous Data Transfer

• The HCS12 has two asynchronous serial interfaces, called the
SCI0 and SCI1 (SCI stands for Serial Communications Interface)

• SCI0 is used by D-Bug12 to communicate with the host PC

• When using D-Bug12 you normally cannot independently operate
SCI0 (or you will lose your communications link with the host PC)

• The SCI0 TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of
Port S.

• The SCI0 RxD pin is bit 0 of Port S; the SCI1 RxD pin is bit 2 of
Port S.

• In asynchronous data transfer, serial data is transmitted by
shifting out of a transmit shift register into a receive shift register.

EE 308 Spring 2015

EE 308 Spring 2015

Timing in Asynchronous Data Transfers

• The BAUD rate is the number of bits per second.

• Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and
115,000

• At 9600 baud the transfer rate is 9600 bits per second, or one bit
in 104 μs.

• When not transmitting the TxD line is held high.

• When starting a transfer the transmitting device sends a start bit
by bringing TxD low for one bit period (104 μs at 9600 baud).

• The receiver knows the transmission is starting when it sees RxD
go low.

• After the start bit, the transmitter sends the requisite number of
data bits.

• The receiver checks the data three times for each bit. If the data
within a bit is different, there is an error. This is called a noise
error.

• The transmitter ends the transmission with a stop bit, which is a
high level on TxD for one bit period.

• The receiver checks to make sure that a stop bit is received at the
proper time.

EE 308 Spring 2015

• If the receiver sees a start bit, but fails to see a stop bit, there is an
error. Most likely the two clocks are running at different
frequencies (generally because they are using different baud rates).
This is called a framing error.

• The transmitter clock and receiver clock will not have exactly the
same frequency.

• The transmission will work as long as the frequencies differ by
less 4.5% (4% for 9-bit data).

EE 308 Spring 2011

EE 308 Spring 2011

Baud Rate Generation

• The SCI transmitter and receiver operate independently, although
they use the same baud rate generator.

• A 13-bit modulus counter generates the baud rate for both the
receiver and the transmitter.

• The baud rate clock is divided by 16 for use by the transmitter.

• The baud rate is

SCIBaudRate = Bus Clock/(16 × SCI1BR[12:0])

• With a 24 MHz bus clock, the following values give typically
used baud rates.

Bits Receiver Transmitter Target Error
SBR[12:0] Clk (Hz) Clk(Hz) Baudrate (%)

39 615385 38462 38400 0.16
78 307692 19231 19200 0.16
156 153846 9615 9600 0.16
312 76923 4808 4800 0.16

EE 308 Spring 2011

SCI Registers

• Each SCI uses 8 registers of the HCS12. In the following we will
refer to SCI1.

• Two registers are used to set the baud rate (SCI1BDH and
SCI1BDL)

• SCI1CR1 is used for special functions, such as setting the
number of data bits to 9.

• Control register SCI1CR2 is used for normal SCI operation.

• Status register SCI1SR1 is used for normal operation.

• SCI1SR2 is used for special functions, such as single-wire mode.

• The transmitter and receiver can be separately enabled in
SCI1CR2.

• Transmitter and receiver interrupts can be separately enabled in
SCI1CR2.

• SCI1SR1 is used to tell when a transmission is complete, and if
any error was generated.

• Data to be transmitted is sent to SCI1DRL.

• After data is received it can be read in SCI1DRL. (If using 9-bit
data mode, the ninth bit is the MSB of SCI0DRH.)

EE 308 Spring 2011

EE 308 Spring 2011

1. SCI Baud Rate Registers (SCI BDH/L)

SBR12 – SBR0: SCI Baud Rate Bits
The baud rate for the SCI is determined by these 13 bits.

2. SCI Control Register 1 (SCICR1)

M: Data Format Mode Bit
1 = One start bit, nine data bits, one stop bit
0 = One start bit, eight data bits, one stop bit

WAKE: Wakeup Condition Bit
A logic 1 (address mark) in the most significant bit position of a
received data character, or a logic 0, an idle condition on the RXD

PE: Parity Enable Bit
1 = Parity function enabled
0 = Parity function disabled

PT: Parity Type Bit
1 = Odd parity
0 = Even parit

EE 308 Spring 2011

3. SCI Control Register 2 (SCICR2)

TIE: Transmitter Interrupt Enable Bit
1 = Transmit data register enable (TDRE) interrupt requests
enabled
0 = TDRE interrupt requests disabled

RIE: Receiver Full Interrupt Enable Bit
1 = Receiver data register full (RDRF) enabled
0 = RDRF disabled

TE: Transmitter Enable Bit
1 = Transmitter enabled
0 = Transmitter disabled

RE: Receiver Enable Bit
1 = Receiver enabled
0 = Receiver disabled

RWU: Receiver Wakeup Bit Standby state
1 = RWU enables the wakeup function and inhibits further receiver
interrupt requests. Normally, hardware wakes the receiver by
automatically clearing RWU.
0 = Normal operation

4. SCI Status Register 1 (SCISR1)

TDRE: Transmit Data Register Empty Flag
1 = Byte transferred to transmit shift register; transmit data register
empty
0 = No byte transferred to transmit shift register

EE 308 Spring 2011

RDRF: Receive Data Register Full Flag
1 = Received data available in SCI data register
0 = Data not available in SCI data register

OR: Overrun flag
1 = Overrun
0 = No overrun

NF: Noise Flag
1 = Noise
0 = No noise

FE: Framing Error Flag
1 = Framing error
0 = No framing error

PF: Parity Error Flag
1 = Parity error
0 = No parity error

5. SCI Status Register 2 (SCISR2)

BRK13: Break Transmit character length
1 = Break character is 13 or 14 bit long
0 = Break Character is 10 or 11 bit long

TXDIR: Transmitter pin data direction in Single-Wire mode.
1 = TXD pin to be used as an output in Single-Wire mode
0 = TXD pin to be used as an input in Single-Wire mode

EE 308 Spring 2011

6. SCI Data Registers (SCIDRH/L)

R8: R8 is the ninth data bit received when the SCI is configured
for 9-bit data format (M = 1).

T8: T8 is the ninth data bit transmitted when the SCI is configured
for 9-bit data format (M = 1).

R7-R0: Received bits seven through zero for 9-bit or 8-bit data
formats

T7-T0: Transmit bits seven through zero for 9-bit or 8-bit formats

EE 308 Spring 2011

Example program using the SCI Transmitter

#include "derivative.h"
/* Program to transmit data over SCI port */

main()
{

/**
* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */
SCI1BDH = 0;
SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |
| | | | | | | ____ Even Parity
| | | | | | ______ Parity Disabled
| | | | | ________ Short IDLE line mode (not used)
| | | | __________ Wakeup by IDLE line rec (not used)
| | | ____________ 8 data bits
| | ______________ Not used (loopback disabled)
| ________________ SCI1 enabled in wait mode
__________________ Normal (not loopback) mode
*/

SCI1CR2 = 0x08; /*0 0 0 0 1 0 0 0
| | | | | | | |
| | | | | | | ____ No Break
| | | | | | ______ Not in wakeup mode (always awake)
| | | | | ________ Receiver disabled
| | | | __________ Transmitter enabled
| | | ____________ No IDLE Interrupt
| | ______________ No Receiver Interrupt
| ________________ No Transmit Complete Interrupt
__________________ No Transmit Ready Interrupt
*/

/**
* End of SCI Setup
***/

EE 308 Spring 2011

SCI1DRL = ’h’; /* Send first byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’e’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’o’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

}

EE 308 Spring 2011

Example program using the SCI Receiver

/* Program to receive data over SCI1 port */

#include "derivative.h"
#include "vectors12.h"

#define enable() __asm(cli)

interrupt void sci1_isr(void);
volatile unsigned char data[80];
volatile int i;

main()
{

/**
* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */
SCI1BDH = 0;
SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |
| | | | | | | ____ Even Parity
| | | | | | ______ Parity Disabled
| | | | | ________ Short IDLE line mode (not used)
| | | | __________ Wakeup by IDLE line rec (not used)
| | | ____________ 8 data bits
| | ______________ Not used (loopback disabled)
| ________________ SCI1 enabled in wait mode
__________________ Normal (not loopback) mode
*/

SCI1CR2 = 0x04; /* 0 0 1 0 0 1 0 0
| | | | | | | |
| | | | | | | ____ No Break
| | | | | | ______ Not in wakeup mode (always awake)
| | | | | ________ Receiver enabled
| | | | __________ Transmitter disabled
| | | ____________ No IDLE Interrupt
| | ______________ Receiver Interrupts used
| ________________ No Transmit Complete Interrupt
__________________ No Transmit Ready Interrupt
*/

EE 308 Spring 2011

UserSCI1 = (unsigned short) &sci1_isr;
i = 0;
enable();

/**
* End of SCI Setup
***/

while (1)
{

/* Wait for data to be received in ISR,
 then do something with it
*/

}
}

interrupt void sci1_isr(void)
{

char tmp;
/* Note: To clear receiver interrupt, need to read SCI1SR1, then read SCI1DRL.
* The following code does that
*/

if ((SCI1SR1 & 0x20) == 0) return; /* Not receiver interrupt */
data[i] = SCI1DRL;
i = i+1;
return;

}

