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 Preparation for Final Lab Project
 Simple Motor Control 

Motor Control

 A proportional–integral–derivative controller (PID controller) 
is a generic control loop feedback mechanism (controller) 
widely used in industrial control systems 

- A PID is the most commonly used feedback controller.
- A PID controller calculates an "error" value as the 

difference between a measured process variable and a 
desired set point. The controller attempts to minimize 
the error by adjusting the process control inputs.

 The PID controller calculation involves three separate constant 
parameters, and is accordingly sometimes called three-term 
control:
 The proportional (P)
 The integral (I)
 The derivative values (D)

 These values can be interpreted in terms of time: P depends on 
the present error, I on the accumulation of past errors, and D is a
prediction of future errors, based on current rate of change. 

 The weighted sum of these three actions is used to adjust the 
process via a control element such as the position of a control 
valve, the power supply of a heating element, or the supply 
voltage to a motor (to control acceleration, velocity, or position).
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Kd and Ki constant
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Stability

 If the PID controller parameters (the gains of the proportional, 
integral and derivative terms) are chosen incorrectly, the 
controlled process input can be unstable, i.e. its output diverges, 
with or without oscillation, and is limited only by saturation or 
mechanical breakage.

 Instability is caused by excess gain, particularly in the presence 
of significant lag.

Kp and Kd constant

Kp and Ki constant
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• Generally, stability of response is required and the process 
must not oscillate for any combination of process conditions and 
setpoints, though sometimes marginal stability (bounded 
oscillation) is acceptable or desired.

Optimum behavior

 The optimum behavior on a process change or setpoint change 
varies depending on the application.

 Two basic requirements are regulation (disturbance rejection – 
staying at a given setpoint) and command tracking 
(implementing setpoint changes) – these refer to how well the 
controlled variable tracks the desired value.

  Specific criteria for command tracking include rise time and 
settling time. Some processes must not allow an overshoot of 
the process variable beyond the setpoint if, for example, this 
would be unsafe. Other processes must minimize the energy 
expended in reaching a new setpoint.

- Rise time (tr): time for the output signal to go from 
10% - 90 % of the step height (or any input signal).

- Settling time (ts): time it takes for the signal to stabilize
(be within 5%, 1%, or other).

- Percent overshoot (PO): is the maximum value minus 
the step value divided by the step value.  In the case of 
the unit step, the overshoot is just the maximum value 
of the step response minus one.
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• Consider a motor which has a maximum speed of 5000 RPM. 
The speed vs. duty cycle may look something like this:

Negative and 
Positive Deadzones
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• The motor doesn’t start rotating until it is driven with a 10% duty 
cycle (??), after which it will increase speed linearly with the 
increase in duty cycle.

• If the motor is initially stopped, and is then turned on (with 100%
duty cycle), the speed vs. time might look something like this (the 
step response of the motor):

• We will control the motor by adjusting the duty cycle with the 
MC9S12. We will do this by measuring the speed and updating the 
duty cycle on a regular basis.

• Let’s do the adjustments once every 8 ms.  This means that we 
will adjust the duty cycle, wait for 8 ms to find the new speed, then
adjust the duty cycle again.



EE 308    Spring 2015

•  How much change in speed will there be in 8 ms? The motor 
behaves like a single time constant system, so the equation for the 
speed as a function of time is:

S(t) = Sf + e−t/ (Si − Sf )

where Si is the speed at time 0, Sf is the speed at time 1, and  is 
the time constant of the system.

• With a duty cycle of D, the final speed will be:

Sf = αDC + S0

where S0 is the speed the motor would turn with a 0% duty cycle if
the speed continued linearly for duty cycles less than 10%, and α is
the slope of the speed vs. duty cycle line (5000/0.9 in this 
example).

• Here we assume that the time constant of the small motors we are
using is about 1 second — i.e., it takes about 5 seconds (5 time 
constants) for the motor to go from a dead stop to full speed. If T =
8 ms, the motor will have changed its speed from Si to:

S(T) = Sf + e−T/ (Si − Sf )
S(T) = (αDC + S0) + e−T/ (Si – (αDC + S0) )

S(T) = (αDC + S0)(1 − e−T/)+ e−T/ Si

The speed at the nth cycle, S[n], will be

S[n] = (αDC + S0)(1 − e−T/) + e−T/ S[n − 1]
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• Consider an integral controller where the duty cycle is adjusted 
according to:

DC[n] = DC[n − 1] + k(Sd − Sm[n])

•  We can simulate the motor response by iterating through these 
equations. Start with Sm[1] = 0, D[1] = 0 (Duty Cycle), and Sd = 
1500. Then we calculate:

Sm[n] = (αDC[n − 1] + S0)(1 − e−T/) + e−T/ Sm[n − 1]

DC[n] = DC[n − 1] + k(Sd − Sm[n])

In MATLAB we can simulate this as:

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle
Sd = 1500; % Desired Speed
S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear
tau = 1; % One second time constant
T = 8e-3; % Update rate is 8 ms
k = 1e-7; % Constant for integral control
Sm = 0; % Measured speed starts at 0
D = 0.1; % Duty cycle starts at 10%
t = 0;
ee = exp(-T/tau); % Precalculate this commonly used value
for n=2:10000 % Make end value bigger if needed

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
D(n) = k*(Sd - Sm(n)) + D(n-1);
t(n) = t(n-1)+T;

end
plot(t,Sm);
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• By changing the value of k we can see how this parameter affects
the response. Here is the curve for k = 1.0 × 10−7:

• With this value of k, it will take about 1 minute for the motor to 
get to the desired speed.

• Here is the curve for k = 1.0 × 10-6:
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• Now it takes about 10 seconds to get to the desired speed, with a 
little bit of overshoot.

Let’s try k = 1.0 × 10−5:

• This gets to the desired value more quickly, but with a lot of 
oscillation. Let’s increase k to 10−4.
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• For this value of k there is a significant oscillation. However, a 
real motor will not act like this. If we look at the duty cycle vs 
time, we see:

• To get this oscillating response, the duty cycle must go over 
100%, and below 0%, which is clearly impossible.

 • To get the response we expect in the lab, we need to limit the 
duty cycle to remain between 20% and 100%. Thus, we change our
simulation to be:

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle
Sd = 1500; % Desired Speed
S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear
tau = 1; % One second time constant
T = 8e-3; % Update rate is 8 ms
k = 1e-7; % Constant for integral control
Sm = 0; % Measured speed starts at 0
D = 0.1; % Duty cycle starts at 10%
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t = 0;
ee = exp(-T/tau); % Precalculate this commonly used value
for n=2:1000 % Make end value bigger if needed
  Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
  if (Sm(n) < 0) Sm(n) = 0; end;   % Motor speed cannot be less than 0
  D(n) = k*(Sd - Sm(n)) + D(n-1);
  if (D(n) > 1.0) D(n) = 1.0; end;  % Keep DC between 20% and 100%
  if (D(n) < 0.2) D(n) = 0.2; end;
  t(n) = t(n-1)+T;
end
plot(t,Sm);

• When we use this to simulate the motor response, we get:
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•In your program for next Lab, you will use a Real Time Interrupt 
with an 8 ms period. In the RTI interrupt service routine, you will 
measure the speed, and set the duty cycle based on the measured 
speed. Your ISR will look something like this:

void INTERRUPT rti_isr(void)
{

Code to read potentiometer voltage and convert into RPM

Code to measure speed Sm in RPM

Code which sets duty cycle to:

DC = DC + k*(Sd-Sm)
if (DC > 1.0) DC = 1.0;
if (DC < 0.2) DC = 0.2;

Code which writes the PWM Duty Cycle Register to generate
duty cycle DC.

Code which clears RTI flag
}

• In the main program, you will display the measured speed, 
desired speed, and duty cycle on the LCD display.

• Your values of k will probably be different than the values in 
these notes because speed vs. duty cycle, time constant, and 
maximum speed will most likely be different than the values I 
used.
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