
EE 308 Spring 2015

 Preparation for Final Lab Project
 Simple Motor Control

Motor Control

 A proportional–integral–derivative controller (PID controller)
is a generic control loop feedback mechanism (controller)
widely used in industrial control systems

- A PID is the most commonly used feedback controller.
- A PID controller calculates an "error" value as the

difference between a measured process variable and a
desired set point. The controller attempts to minimize
the error by adjusting the process control inputs.

 The PID controller calculation involves three separate constant
parameters, and is accordingly sometimes called three-term
control:
 The proportional (P)
 The integral (I)
 The derivative values (D)

 These values can be interpreted in terms of time: P depends on
the present error, I on the accumulation of past errors, and D is a
prediction of future errors, based on current rate of change.

 The weighted sum of these three actions is used to adjust the
process via a control element such as the position of a control
valve, the power supply of a heating element, or the supply
voltage to a motor (to control acceleration, velocity, or position).

EE 308 Spring 2015

Kd and Ki constant

EE 308 Spring 2015

Stability

 If the PID controller parameters (the gains of the proportional,
integral and derivative terms) are chosen incorrectly, the
controlled process input can be unstable, i.e. its output diverges,
with or without oscillation, and is limited only by saturation or
mechanical breakage.

 Instability is caused by excess gain, particularly in the presence
of significant lag.

Kp and Kd constant

Kp and Ki constant

EE 308 Spring 2015

• Generally, stability of response is required and the process
must not oscillate for any combination of process conditions and
setpoints, though sometimes marginal stability (bounded
oscillation) is acceptable or desired.

Optimum behavior

 The optimum behavior on a process change or setpoint change
varies depending on the application.

 Two basic requirements are regulation (disturbance rejection –
staying at a given setpoint) and command tracking
(implementing setpoint changes) – these refer to how well the
controlled variable tracks the desired value.

 Specific criteria for command tracking include rise time and
settling time. Some processes must not allow an overshoot of
the process variable beyond the setpoint if, for example, this
would be unsafe. Other processes must minimize the energy
expended in reaching a new setpoint.

- Rise time (tr): time for the output signal to go from
10% - 90 % of the step height (or any input signal).

- Settling time (ts): time it takes for the signal to stabilize
(be within 5%, 1%, or other).

- Percent overshoot (PO): is the maximum value minus
the step value divided by the step value. In the case of
the unit step, the overshoot is just the maximum value
of the step response minus one.

EE 308 Spring 2015

• Consider a motor which has a maximum speed of 5000 RPM.
The speed vs. duty cycle may look something like this:

Negative and
Positive Deadzones

EE 308 Spring 2015

• The motor doesn’t start rotating until it is driven with a 10% duty
cycle (??), after which it will increase speed linearly with the
increase in duty cycle.

• If the motor is initially stopped, and is then turned on (with 100%
duty cycle), the speed vs. time might look something like this (the
step response of the motor):

• We will control the motor by adjusting the duty cycle with the
MC9S12. We will do this by measuring the speed and updating the
duty cycle on a regular basis.

• Let’s do the adjustments once every 8 ms. This means that we
will adjust the duty cycle, wait for 8 ms to find the new speed, then
adjust the duty cycle again.

EE 308 Spring 2015

• How much change in speed will there be in 8 ms? The motor
behaves like a single time constant system, so the equation for the
speed as a function of time is:

S(t) = Sf + e−t/ (Si − Sf)

where Si is the speed at time 0, Sf is the speed at time 1, and is
the time constant of the system.

• With a duty cycle of D, the final speed will be:

Sf = αDC + S0

where S0 is the speed the motor would turn with a 0% duty cycle if
the speed continued linearly for duty cycles less than 10%, and α is
the slope of the speed vs. duty cycle line (5000/0.9 in this
example).

• Here we assume that the time constant of the small motors we are
using is about 1 second — i.e., it takes about 5 seconds (5 time
constants) for the motor to go from a dead stop to full speed. If T =
8 ms, the motor will have changed its speed from Si to:

S(T) = Sf + e−T/ (Si − Sf)
S(T) = (αDC + S0) + e−T/ (Si – (αDC + S0))

S(T) = (αDC + S0)(1 − e−T/)+ e−T/ Si

The speed at the nth cycle, S[n], will be

S[n] = (αDC + S0)(1 − e−T/) + e−T/ S[n − 1]

EE 308 Spring 2015

• Consider an integral controller where the duty cycle is adjusted
according to:

DC[n] = DC[n − 1] + k(Sd − Sm[n])

• We can simulate the motor response by iterating through these
equations. Start with Sm[1] = 0, D[1] = 0 (Duty Cycle), and Sd =
1500. Then we calculate:

Sm[n] = (αDC[n − 1] + S0)(1 − e−T/) + e−T/ Sm[n − 1]

DC[n] = DC[n − 1] + k(Sd − Sm[n])

In MATLAB we can simulate this as:

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle
Sd = 1500; % Desired Speed
S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear
tau = 1; % One second time constant
T = 8e-3; % Update rate is 8 ms
k = 1e-7; % Constant for integral control
Sm = 0; % Measured speed starts at 0
D = 0.1; % Duty cycle starts at 10%
t = 0;
ee = exp(-T/tau); % Precalculate this commonly used value
for n=2:10000 % Make end value bigger if needed

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
D(n) = k*(Sd - Sm(n)) + D(n-1);
t(n) = t(n-1)+T;

end
plot(t,Sm);

EE 308 Spring 2015

• By changing the value of k we can see how this parameter affects
the response. Here is the curve for k = 1.0 × 10−7:

• With this value of k, it will take about 1 minute for the motor to
get to the desired speed.

• Here is the curve for k = 1.0 × 10-6:

EE 308 Spring 2015

• Now it takes about 10 seconds to get to the desired speed, with a
little bit of overshoot.

Let’s try k = 1.0 × 10−5:

• This gets to the desired value more quickly, but with a lot of
oscillation. Let’s increase k to 10−4.

EE 308 Spring 2015

• For this value of k there is a significant oscillation. However, a
real motor will not act like this. If we look at the duty cycle vs
time, we see:

• To get this oscillating response, the duty cycle must go over
100%, and below 0%, which is clearly impossible.

 • To get the response we expect in the lab, we need to limit the
duty cycle to remain between 20% and 100%. Thus, we change our
simulation to be:

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle
Sd = 1500; % Desired Speed
S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear
tau = 1; % One second time constant
T = 8e-3; % Update rate is 8 ms
k = 1e-7; % Constant for integral control
Sm = 0; % Measured speed starts at 0
D = 0.1; % Duty cycle starts at 10%

EE 308 Spring 2015

t = 0;
ee = exp(-T/tau); % Precalculate this commonly used value
for n=2:1000 % Make end value bigger if needed
 Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
 if (Sm(n) < 0) Sm(n) = 0; end; % Motor speed cannot be less than 0
 D(n) = k*(Sd - Sm(n)) + D(n-1);
 if (D(n) > 1.0) D(n) = 1.0; end; % Keep DC between 20% and 100%
 if (D(n) < 0.2) D(n) = 0.2; end;
 t(n) = t(n-1)+T;
end
plot(t,Sm);

• When we use this to simulate the motor response, we get:

EE 308 Spring 2015

•In your program for next Lab, you will use a Real Time Interrupt
with an 8 ms period. In the RTI interrupt service routine, you will
measure the speed, and set the duty cycle based on the measured
speed. Your ISR will look something like this:

void INTERRUPT rti_isr(void)
{

Code to read potentiometer voltage and convert into RPM

Code to measure speed Sm in RPM

Code which sets duty cycle to:

DC = DC + k*(Sd-Sm)
if (DC > 1.0) DC = 1.0;
if (DC < 0.2) DC = 0.2;

Code which writes the PWM Duty Cycle Register to generate
duty cycle DC.

Code which clears RTI flag
}

• In the main program, you will display the measured speed,
desired speed, and duty cycle on the LCD display.

• Your values of k will probably be different than the values in
these notes because speed vs. duty cycle, time constant, and
maximum speed will most likely be different than the values I
used.

EE 308 Spring 2015

