
 EE 308 Spring 2015

 Introduction to the 9S12 Microcontroller

o Harvard architecture and Princeton architecture
o Memory map for a Princeton architecture

microprocessor
o 68HC12 Address Space
o 68HC12 ALU
o 68HC12 Programming Model
o Some 9S12 Instructions Needed for Lab 1
o A Simple Assembly Language Program
o Assembling an Assembly Language Program

 EE 308 Spring 2015

 EE 308 Spring 2015

MC9S12 Address Space

• MC9S12 has 16 address lines

• MC9S12 can address 216 distinct locations

• For MC9S12, each location holds one byte (eight bits)

• MC9S12 can address 216 bytes

• 216 = 65536

• 216 = 26 × 210 = 64 × 1024 = 64 KB

• (1K = 210 = 1024)

• MC9S12 can address 64 KB

• Lowest address: 00000000000000002 = 000016 = 010

• Highest address: 11111111111111112 = FFFF16 = 6553510

 EE 308 Spring 2015

MEMORY TYPES

RAM: Random Access Memory (can read and write)

ROM: Read Only Memory (programmed at factory)

PROM: Programmable Read Only Memory
(Programmed once at site)

EPROM: Erasable Programmable Read Only Memory
(Program at site, can erase using UV light and reprogram)

EEPROM: Electrically Erasable Programmable Read Only
Memory
(Program and erase using voltage rather than UV light)

 EE 308 Spring 2015

MC9S12 has:

12 KB RAM
4 KB EEPROM (Normally can only access 3 KB)
256 KB Flash EEPROM (Can access 16 KB at a time)

 EE 308 Spring 2015

MC9S12 ALU

• Arithmetic Logic Unit (ALU) is where instructions are executed.

• Examples of instructions are arithmetic (add, subtract), logical
(bitwise AND, bitwise OR), and comparison.

• MC9S12 has two 8-bit registers for executing instructions. These
registers are called A and B.

• For example, the MC9S12 can add the 8-bit number stored in B
to the eight-bit number stored in A using the instruction ABA (add
B to A):

When the control unit sees the sixteen-bit number 0x1806, it tells
the ALU to add B to A, and store the result into A.

 EE 308 Spring 2015

MC9S12 Programming Model

• A Programming Model details the registers in the ALU and
control unit which a programmer needs to know about to program
a microprocessor.

• Registers A and B are part of the programming model. Some
instructions treat A and B as a sixteen-bit register called D for such
things as adding two sixteen-bit numbers. Note that D is the same
as A and B.

• The MC9S12 can work with 8-bit numbers (bytes) and 16-bit
numbers (words).

• The size of word the MC9S12 uses depends on the instruction.
For example, the instruction LDAA (Load Accumulator A) puts a
byte into A, and LDD (Load Double Accumulator) puts a word
into D.

 EE 308 Spring 2015

MC9S12 Programming Model

• The MC9S12 has a sixteen-bit register which tells the control unit
which instruction to execute. This is called the Program Counter
(PC). The number in PC is the address of the next instruction the
MC9S12 will execute.

• The MC9S12 has an eight-bit register which tells the MC9S12
about the state of the ALU. This register is called the Condition
Code Register (CCR). For example, one bit (C) tells the MC9S12
whether the last instruction executed generated a carry. Another
bit (Z) tells the MC9S12 whether the result of the last instruction
was zero. The N bit tells whether the last instruction executed
generated a negative result.

• There are three other 16-bit registers – X, Y, SP – which we will
discuss later.

 EE 308 Spring 2015

Some MC9S12 Instructions Needed for Lab 1

LDAA address puts the byte contained in memory at address into
 A

STAA address puts the byte contained in A into memory at
 address

STAB address puts the byte contained in B into memory at
 address

ADDA address adds the byte in memory address to A, and save
 result in A

CLRB clears B (0 B)

INCA adds 1 to A ((A) + 1 A)

DECB decrements B by 1 ((B) - 1 B)

LSRA shifts A right by one bit (puts 0 into MSB)
This divides an unsigned byte by 2

ASRA shifts A right by one bit (keep MSB the same)
This divides a signed byte by 2

SWI Software Interrupt (Used to end all our MC9S12
 programs)

 EE 308 Spring 2015

A Simple MC9S12 Program

• All programs and data must be placed in memory between
address 0x1000 and 0x3BFF. For our short programs we will put
the first instruction at 0x2000, and the first data byte at 0x1000.

• Consider the following program:
ldaa $1000 ; Put contents of memory at 0x1000 into A
inca ; Add one to A
staa $1001 ; Store the result into memory at 0x1001
swi ; End program

• If the first instruction is at address 0x2000, the following bytes in
memory will tell the MC9S12 to execute the above program:

• If the contents of address 0x1000 were 0xA2, the program would
put a 0xA3 into address 0x1001.

 EE 308 Spring 2015

A Simple Assembly Language Program

• It is difficult for humans to remember the numbers (op codes) for
computer instructions. It is also hard for us to keep track of the
addresses of numerous data values. Instead we use words called
mnemonics to represent instructions, and labels to represent
addresses, and let a computer programmer called an assembler to
convert our program to binary numbers (machine code).

• Here is an assembly language program to implement the previous
program:

prog: equ $2000 ; Start program at 0x2000
data: equ $1000 ; Data value at 0x1000

org prog

ldaa input
inca
staa result
swi

org data ; Start of data
input: dc.b $A2
result: ds.b 1

 EE 308 Spring 2015

• We would put this code into a file and give it a name, such as
main.asm (assembly language programs usually have the
extension .s or .asm).

• Note that equ, org, dc.b and ds.b (define constant byte and
define storage byte) are not instructions for the MC9S12 but are
directives to the assembler which makes it possible for us to write
assembly language programs. They are called assembler directives
or psuedo-ops. For example the psuedo-op org tells the assembler
that the starting address (origin) of our program should be 0x2000.

 EE 308 Spring 2015

Assembling an Assembly Language Program

• A computer program called an assembler can convert an
assembly language program into machine code.

• The assembler we use in class is a commercial compiler from
Freescale called CodeWarrior (with Eclipse IDE) .

•How to use CodeWarrior is discussed in Lab 1 and in Huang
(Section 3.8).

• The assembler will produce a file called main.lst, which shows
the machine code generated.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at
0x2000
3 3 0000 1000 data equ $1000 ; Data value at
0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

 EE 308 Spring 2015

 This will produce a file called Project.abs.s19 which we can
load into the MC9S12.

S06B0000433A5C446F63756D656E747320616E642053657474696E67
73
S1051000A20048
S10B2000B61000427A10013F02
S9030000FC

 The first line of the S19 file starts with a S0: the S0 indicates
that it is the first line.
- This first line is just for information; it does not contain code

which is loaded into the MC9S12
- The S0 line generated by CodeWarrior is so long that it

confuses the MC9S12 Dbug-12 monitor. You will need to
delete it before loading the S19 file into the MC9S12.

 The last line of the S19 file starts with a S9: the S9 indicates
that it is the last line.

 The other lines begin with a S1: the S1 indicates these lines are
data to be loaded into the MC9S12 memory.

 Here is the second line (with some spaces added):

S1 0B 2000 B6 1000 42 7A 1001 3F 02

 On the second line, the S1 if followed by a 0B. This tells the
loader that there this line has 11 (0x0B) bytes of data follow.

 The count 0B is followed by 2000. This tells the loader that the
data (program) should be put into memory starting with address
0x2000.

 EE 308 Spring 2015

 The next 16 hex numbers B61000427A10013F are the 8 bytes
to be loaded into memory. You should be able to find these bytes
in the main.lst file.

 The last two hex numbers, 0x02, is a one byte checksum, which
the loader can use to make sure the data was loaded correctly.

 EE 308 Spring 2015

What will this program do?

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at
0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

• ldaa input : Load contents of 0x1000 into A
(0xA2 into A)

• inca: Increment A
(0xA2 + 1 = 0xA3 → A)

• staa result : Store contents of A to address 0x1001
(0xA3 → adress 0x1001)

