Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

« Setting and clearing bits in C
« Using pointers in C
o Program to count the number of negative numbers in an
area of memory

« Introduction to the MC9S12 Hardware Subsystems
o The MC9S12 timer subsystem

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Operators in C

Operator Action example
| Bitwise OR %00001010 | %01011111 =% 01011111
& Bitwise AND |2%00001010 & %01011111 = % 00001010
A Bitwise XOR |2%00001010 A %01011111 =% 01010101
~ Bitwise COMP| ~%00000101 = %11111010
% Modulo 10%8=2
I Logical OR | %00000000 || %00100000 = 1
&& Logical AND |%11000000 && %00000011 = 1
%11000000 && 2%00000000=0
Setting and Clearing Bits in C

Assembly C action

bset DDRB,$0F DDRB = DDRB | 0x0f; Set 4 LSB of DDRB

belr DDRB,$FO0 DDRB = DDRB & ~0xf0; Clear 4 MSB of DDRB

11: brset PTB,$01,11

12: brclr PTB,$02,12

while (PTB & 0x01) == 0x01) Wait until bit clear

while (PTB & 0x02) == 0x00) Wait until bit set

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

Pointers in C
To read a byte from memory location 0xE000:
var = *(char *) OxE000;
To write a 16-bit word to memory location OxE002:

*(int *) OxE002 = var;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Program to count the number of negative numbers in an array
in memory

/* Program to count the number of negative numbers in memory *
Start at 0OxE000, go through OXEFFF
Treat the numbers as 8-bit

*/
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

unsigned short num_neg; /* Make num_neg global so we can */
/* find it in memory use type int so */
/* can hold value larger than 256 */
/* Unsigned because number cannot */
/* be negative */

main()

{

char *ptr,*start,*end;

start = *(char *) 0xE000; /* Address of first element */
end = *(char *) OXEFFF; /* Address of last element */

num_neg = 0;

for (ptr = start; ptr <= end; ptr = ptr+1)
{
if (*ptr < 0) num_neg = num_neg + 1;

}
_ _asm(swi); /* Exit to DBug-12 */

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Hello, World!
* Here is the standard “hello, world” program:
#include <stdio.h>
main()

{
}

printf("hello, worl!d\r\n");

* To write the ”hello, world” program, you need to use the printf()
function.

* The printf() function is normally a library function
* In CodeWarrior, you can access printf() by doing the following:
1. In your C program, add the following lines:

#include <stdio.h>

#include <termio.h>

2. In CodeWarrior, select Project, Add Files, and select the file
termio.c. This is in the CodeWarrior library, which is in the
following location on my computer:

c:\Program Files\Freescale\CWS12v5.1\lib\hc12c\src

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Your C program will look like this:

#include <stdio.h>

#include <termio.h>

main()

{
printf("hello, world!\r\n");
_ _asm(swi);

}

 The above program is about 1,500 bytes long.

* To load the program into your Dragon12 board, you will have to
edit the .s19 file and remove the first line which starts with a SO.
The last line of the .s19 file looks this:

S105FFFE2029B4

This tells the loader to put the 16-bit number 2029 into address
FFFE. The address FFFE is in flash EEPROM, and the loader will
not be able to write there. You can leave the line in, in which case
DBug12 will give you the warning "Can’t Write Target Memory",
or you can remove this line from the .s19 file to avoid getting the
warning. (If you could put 2029 into address FFFE, your MC9S12
would start executing the code at address 0x2029 when you reset
the board.)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

* You can print out variables as well. Here is an example:

#include <stdio.h>
#include <termio.h>

main()
{
int i;
for (i=0;i<100;i++) printf("i = %d\r\n",i);

_ _asm(swi);

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Introduction to the MC9S12 Timer Subsystem

* The MC9S12 has a 16-bit counter that normally runs with a 24
MHz clock.

» Complete information on the MC9S12 timer subsystem can be
found in the ECT_16B8C Block User Guide. ECT stands for
Enhanced Capture Timer.

* When you reset the MC9S12, the clock to the timer subsystem is
initially turned off to save power.

— To turn on the clock you need to write a 1 to Bit 7 of
register TSCR1 (Timer System Control Register 1) at
address 0x0046.

* The clock starts at 0x0000, counts up (0x0001, 0x0002, etc.) until
it gets to OXFFFF. It rolls over from OxFFFF to 0x0000, and
continues counting forever (until you turn the counter off or reset
the MC9S12).

» It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the
counter to count from 0x0000 to OxFFFF and roll over to 0x0000.

* To determine the time an event happens, you can read the value
of the clock (by reading the 16-bit TCNT (Timer Count Register)
at address 0x0044 (page 28 of MC9S12DP256B).

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308/MENG 483 Spring 2017

Bus clock ———=

Modulus counter

Interrupt y

Timer overflow

interrupt -]

Timer channgl 0

interrupt -]
g
-
|
R a—
|
-

Timer channgl 7

interrupt

FPA overflow -

interrupt

PA imput

interrupt

PE overflow -

interrupt

Prescaler

Channel 0

Input capture

16-bit Counter

Cutput compare

’Ll_4

Channel 1

16-hit Modulus Counter

Input capture

Cutput compare

L|_+

Channel 2

Input capture

Cutput compare

‘Llj

Channel 3

Registers

Input capture

Cutput compare

’Ll_ln

Channel 4

Input capture

Cutput compare

’Llj

Channel 5

Input capture

Cutput compare

Llj

Channel 6

16-hit
Pulse accumulator &

Input capture

Cutput compare

‘Llj

Channel 7

16-hit
Fulse accumulator B

Input capture

Cutput compare

’Ll}

- |OC0

| DT

t— | T2

| T3

- |OC4

- | DC5

t—— | DICH

| | DT

Figure 1-1 Timer Block Diagram

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

Timer inside the MC9S12:

When you enable the timer (by writing a 1 to bit 7 of TSCR1), you
connect a 24—MHz oscillator to a 16—bit counter.

You can read the counter at address TCNT.

The counter will start at 0, will count to OXFFFF, then will roll over
to 0x0000. It will take 2.7307 ms for this to happen.

16-Bit Counter
TCNT {addr (xd4)

24 MHz

TEN
(Bit 7 of TSCR1, addr OxdE&)

To enable timer on MC9S12, set Bit 7 of register TCSR1:

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;

/

Why using the OR operator and not
TSCR1=0x80?

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

3.3.6 TSCR1 — Timer System Control Register 1
Register offset: § 06

BITT & 3 4 5 | 2 1 BITD
R O o
W TEM TEWAL TSFRZ TFFCA
RESET: 0 O a 0 O a 0 O

= Unimglemenied or Reserved

Figure 3-6 Timer System Control Register 1 (TSCR1)

Fead or write anytime.

TEN — Timer Enable
0 = Diisables the main timer, including the counter. Can be used for reducing power consumption.
1 = Allows the timer to function normally.
If for any reason the imer is not active, there is no <64 clock for the pulse accumulator since the 64
is generated by the timer prescaler.

TSWAI — Timer Module Stops While in Wait
0 = Allows the timer module to continue running during wait
1 = Disables the timer modube when the MCL is in the wait mode. Timer intermrupts canmot be osed
to get the MCU out of wait

TEWAL also affects pulse accumulators and modulus down counters.

TSFEY. — Timer and Modulus Counter Stop While in Freeze Mode
0 = Allows the timer and modulus counter to continue running while in freeze mode.
1 = [Misables the timer and modulus counter whenever the MCU is in freeee mode. This is useful
for emulation.

TSFEZ doss not stop the pulse accumulator.

TFFCA — Timer Fast Flag Clear All

0 = Allows the timer flag clearing to function normally.

1 = For TFLG130E), a read from an input capture or a write to the output compare channel
{510-51F) causes the comesponding channel flag. CnF, to be cleared. For TFLG2 (S0F), any
access to the TCNT register (304, 305) clears the TOF flag. Any access to the PACN3 and
PACN2 mgisters ($22. $23) clears the PAOVF and PAITF flags in the PAFLG register ($21).
Any access to the PACN] and PACNO registers (324, §25) clears the PROVF flag in the
PBFLG register ($31). This has the advantage of eliminating software overhead in a separate
chear sequence. Extra came is required to avoid accidental flag clearing due to unintended
ACCeSSes.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

* To put in a delay of 2.7307 ms, you could wait from one reading
of 0x0000 to the next reading of 0x0000.

* Problem: You cannot read the TCNT register quickly enough to
make sure you will see the 0x0000.

To put in a delay for 2.7307 ms, could watch timer until
TCNT == 0x0000:

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;
11: 1dd TCNT 3] while (TCNT != 0x0000) ;
bne 11 [3/1]

Problem: You might see OxFFFF and 0x0001, and miss
0x0000

16-Bit Counter
TCNT {addr Ox44)

24 MHz

TEN

(Bit 7 of TSCRA1, addr Ox46)

* Solution: The MC9S12 has built-in hardware which will set a
flip-flop every time the counter rolls over from OxFFFF to 0x0000.

* To wait for 2.7307 ms, just wait until the flip-flop is set, then
clear the flip-flop, and wait until the next time the flip-flop is set.

* You can find the state of the flip-flop by looking at bit 7 (the
Timer Overflow Flag (TOF) bit) of the Timer Flag Register 2
(TFLG2) register at address 0x004F.

Electrical Engineeri
ectrical Engineering EE 308/MENG 483 Spring 2017

New Mexico Institute of Mining and Technology

* You can clear the flip-flop by writing a 1 to the TOF bit of
TEFLG2.

Solution: When timer overflows, it latches a 1 into a flip—flop.
Now when timer overflows (goes from OxFFFF to 0x0000), Bit 7
of TFLG2 register is set to one. Can clear register by writing a 1 to

Bit 7 of TFLG2 register.
TIMER OVERFLOWY INTERRUPT
L LEH

I— 1] L I ToF
Raad
(BT of TFLGL addr [mdF)

e’ o
TEM) - R

(BT of TECR1, addr deds)

TOF

il
({ER T of TALGZ. addr Ou&F)

bset TSCR1,#$80 ; Enable timer
11: brclr TFLG2,#$80,11 ; Wait for Bit 7 of TFLG2 is set TSCR1 = TSCR1 | 0x80; //Enable timer
ldaa #$80 while ((TFLG2 & 0x80) == 0) ; // Wait for TOF

program ... program ...

staa TFGL?2 ; Clear TOF flag TFLG2 = 0x80; // Clear TOF

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

3.3.13 TFLGZ — Main Timer Interrupt Flag 2
Register offset: §_OF

BITY 1 BITO
R o] o H a o a
TOF
W
RESET: a o o o 0 a o a

= Unimglemenied or Reserved
Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write the bit
to one.

Read any time. Write used in clearing mechanism (set bits cause cormesponding bits to be cleared).

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.

TOF — Timer Overflow Flag

Set when 16-bit free-running timer overflows from SFEFF to 0000, This bit is clearsd automatically
by a wrike to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

» Another problem: Sometimes you may want to delay longer
than 2.7307 ms, or time an event which takes longer than 2.7307
ms. This is hard to do if the counter rolls over every 2.7307 ms.

* Solution: The MC9S12 allows you to slow down the clock which
drives the counter.

* You can slow down the clock by dividing the 24 MHz clock by
2,4, 8,16, 32, 64 or 128.

* You do this by writing to the prescaler bits (PR2:0) of the Timer
System Control Register 2 (TSCR2) Register at address 0x004D.

2.7307 ms will be too short if you want to see lights flash. You can
slow down clock by dividing it before you send it to the 16—bit
counter. By setting prescaler bits PR2,PR1,PR0 of TSCR2 you
can slow down the clock:

PR Divide Freq Overflow Rate
000 1 24 MHz 2.7307 ms

001 2 12 MHz 5.4613 ms

010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms
110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

To set up timer so it will overflow every 87.3813 ms:

bset TSCR1,#$80 TSCR1 =TSCR1 | 0x80;
ldaa #$05 TSCR2 = 0x05;
staa TSCR2

TIMER OVERFLOW INTERRUPT

1 1=H
| o
1] 0 f
{Bit 7 of TFLGZ addr (udF)
1681t Counter Owarfiow
seMz—— — | Prascaisr = >
TEN TCHT (nddr 44 .
{BIt T of TSCR1, nddr (48
PR[2.0]
{Ests 2-0 of TSCAZ addr (u40) TOF

Wit
(Bl T of TFLGL addr tdF)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

3.3.10 TIE — Timer Interrupt Enable Register
Register offset: § 0C

Bz G = 4 3 2 1 BITa
R
w | Cal CH C4l Gl caA Gl Co
RESET:] a 0i o] 1} a o

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.

The bits in TIE comespond bit-for-bit with the bits in the TFLG status register. If cleard, the
corrzsponding flag is disabled from causing a hardware interrupt. If set. the comesponding flag is enabled

to cause a inferrupt.

CTHCO — Inpaut Capture/COutput Compare “x” Interrupt Enable

3.3.11 TSCR2 — Timer System Control Register 2

Register offset: §_0D

BITT & 5 4 3 2 1 EITD
R 0 0 1]
- TOl TCRE PR2 PR1 PRO
RESET: a 0 0 1] o 0 1] o

= Unimplemenied or Reserved

Figure 3-11 Timer System Control Register 2 (TSCR2)

Read or write anytime.

Tl — Timer Overflow Iniermupt Enable
() = Interrupt inhibited
1 = Hardware: interrupt requested when TOF flag set

TCRE — Timer Counter Beset Enable
This bit allows the timer counter to be reset by a successful output compare 7 event. This mode of
operation is similar to an up-counting modulus counter.
(1 = Counter reset inhibited and counter free runs
1 = Counter reset by a successful output compare 7
If TCT = 80000 and TCRE = 1, TCNT will stay at 30000 continuously. If TCT = 3FFFF and TCRE =
1, TOF will never be set when TCNT is reset from SFFFF o $0000.

PRZ, PE1. PRO— Timer Prescaler Selact

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

ECT_1688C Block User Guide Wi01.03

These three bits specify the number of +2 stages that are to be inseried between the bus clock and the
miain timer counier,

Table 3-4 Prescaler Selection

PR2 PR1 PRO Prescale Factor
o a o 1
] a 1 2
] 1 o 4
o 1 1 g8
1 a [§] 16
1 a 1 32
1 1 o B4
1 1 1 128

The newly selected prescale factor will not take effect until the next synchronized edge when: all
prescak counter stages equal zero.

3.3.12 TFLG1 — Main Timer Interrupt Flag 1

Register offset: § 0E

BIT? g g 4 3 2 1 BIiTd
R
C7F CEF CSF C4F C3F C2F C1F COF
RESET: o 0] o] o 0 0

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

TFLG1 indicaies when interrupt conditions have occurmed. To clear a bit in the flag register, wrike a one
to the bit.

TFLG1 indicates when interrupt conditions have occurred. To clear a bit in the flag register, wrike a one
to the hit.

Usze of the TFMOD bit in the IC5Y 8 register (S2B) in conjunction with the use of the ICOVW regiser
{324 allows a timer inkermupt to be generaied afier capturing two values in the capture and holding
registers instead of penerating an interrupt for every capture.

Read any time. Write used in the clearing mechanism (set bits cause corresponding bits to be cleared).
Writing a zero will not affect current status of the bit

When TFFCA bitin TSCR mgister is set, a read from an input capture or a wrile into an outpul compans
channel ($10-%1F) will cause the comesponding channel flag CoF to be cleared.
CTF-C0F — Input Capture! Output Compare Channel “n™ Flag.

(C0F can also be set by 16- bit Pulse Accumulator B (PACE). C3F - COF can also be set by 8 - bit pulse
accumulators PACS - PACO.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Setting and Clearing Bits in C

* To put a specific number into a memory location or register (e.g.,
to put 0x55 into PORTA):

movb #$55,PORTA PORTA = 0x55;

* To set a particular bit of a register (e.g., set Bit 4 of PORTA)
while leaving the other bits unchanged do a bitwise OR of the
register and a mask which has a 1 in the bit(s) you want to set, and
a 0 in the other bits:

bset PORTA,#$10 PORTA = PORTA | 0x10;

* To clear a particular bit of a register (e.g., clear Bit 5 of PORTA)
while leaving the other bits unchanged do a bitwise AND of the
register and a mask which has a 0 in the bit(s) you want to clear,
and a 1 in the other bits. You can construct this mask by
complementing a mask which has a 1 in the bit(s) you want to set,
and a 0 in the other bits:

bclr PORTA,#$20 PORTA = PORTA & 0xDF;
PORTA = PORTA & ~0x20;

Using ~0x20 is better than using OxDF because it is less
likely that you will make a mistake when complementing 0x20 in
your head.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

* To change several bits of a register, AND the register with 1’s in
the bits you want to leave unchanged, then OR the result with 1’s
in the bits you want to set, and 0’s in the bits you want to clear. For
example, to set bits 2 and 0, and clear bit 1 (write 101 to bits 2-0)
of TSCRZ2, do the following:

bclr TSCR2,#$02 TSCR2 = TSCR2 & ~0x02;
bset TSCR2,#05 TSCR2 = TSCR2 | 0x05;
or

TSCR2 = (TSCR2 & ~0x02) | 0x05;

« Write to all bits of a register when you know what all bits should
be, such as when you initialize it. Set or clear bits when you want
to change only one or a few bits and leave the others unchanged.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

C Program to implement a delay

#include <hidef.h>
#include "hcs12.h"

void delay(void);
main()
{
TSCR1 =TSCR1 | 0x80; /* Enable timer subsystem */
TSCR2 = 0x05; /* Set overflow time to 87 ms */
TFLG2 = 0x80; /* Make sure TOF bit clear */
while (1) {
PORTB = PORTB + 1;
delay();
}
}
void delay(void)
{
while ((TFLG2 & 0x80) == 0x00) ; /* Wait for timer */
/* overflow */
TFLG2 = 0x80; /* Clear TOF bit */
}

* Problem: Cannot do anything while waiting

* Solution: Interrupt — can do other things, and hardware will
signal processor when overflow occurs

* Need to understand how processor handles exceptions — resets
and interrupts

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

» Start by looking at what happens when the MC9S12 is reset

What Happens When You Reset the MC9S12?

» What happens to the MC9S12 when you turn on power or push
the reset button?

* How does the MC9S12 know which instruction to execute first?

* On reset the MC9S12 loads the PC with the address located at
address OXFFFE and 0xFFFF.

* Here is what is in the memory of our MC9S12:

o) 1 2 3| 4| &5 &6 7)) 8| 9 a| B| C D| E| F
FFFD | F&6 |EC (F6 | FO |F6 |F4 (F& | FB | F5 |FC | F7 | 00 | FT (04§ FO | 00

* On reset or power-up, the first instruction your MC9S12 will
execute is the one located at address 0xF000.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Introduction to Interrupts
Can implement a delay by waiting for the TOF flag to become set:

void delay(void)

{
while ((TFLG2 & 0x80) == 0) ;

TFLG2 = 0x80;

Problem: Can’t do anything else while waiting.

Solution: Use an interrupt to tell you when the timer overflow has
occurred.

Interrupt: Allows the HCS12 to do other things while waiting for
an event to happen. When the event happens, tell HCS12 to take
care of event, then go back to what it was doing.

What happens when HCS12 gets an interrupt: HCS12
automatically jumps to part of the program which tells it what to
do when it receives the interrupt (Interrupt Service Routine).

How does HCS12 know where the ISR is located: A set of
memory locations called Interrupt Vectors tell the HCS12 the
address of the ISR for each type of interrupt.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

How does HCS12 know where to return to: Return address
pushed onto stack before HCS12 jumps to ISR. You use the RTI
(Return from Interrupt) instruction to pull the return address off of
the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed
onto stack before jumping to ISR, and pulled off the stack before
returning to program. When you execute the RTT instruction at the
end of the ISR, the registers are pulled off of the stack.

What happens if you get an interrupt while in an ISR: MC9S12
disables interrupts (sets I bit of CCR) before it starts executing
ISR.

To Return from the ISR You must return from the ISR using the
RTT instruction. The RTT instruction tells the HCS12 to pull all the
registers off of the stack and return to the address where it was
processing when the interrupt occurred.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

How to generate an interrupt when the timer overflows

TIMER OVERFLOW INTERRUPT

vCC

I— TOF
D Q

::::: iof TALGZ, addr x4F)
R Commomm [ommm g
R
(Bl 7 of TECA1, addr Ixd6 PR[0]
(Bhs 2-00f TSCRZ, acdr x4D) ToF
Wirhe
(B#t 7 of TFLGZ. addr (x4F) ol
TOI Blt IBh
TSCR2 CCR
{Bie 7 of TRCAZ, addr 0x40) {Enable by ciearing I bitwith CLI Insr)
{Enable by seting Bht 7 of TSCRE)
To generate a TOF interrupt: Inside TOF ISR:
Enable timer (set Bit 7 of TSCR1) Take care of event
Set prescaler (Bits 2:0 of TSCR2) Clear TOF flag (Write 1 to Bit 7 of TFLG2)

Enable TOI interrupt (set Bit 7 of TSCR2)
Enable interrupts (clear I bit of CCR)

Return with RTI

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

#include <hidef.h>
#include "hcs12.h"

interrupt void toi_isr(void);

main()
{
_ _asm(sei); /* Disable interrupts */
DDRB = 0xff; /* Make Port B output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x85; /* Enable timer overflow interrupt, set */
/* prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */

_ _asm(cli); /* Enable interrupts (clear I bit) */
while (1)
{
/* Put code here to do things */
}

void interrupt toi_isr(void)

{
PORTB = PORTB + 1; /* Increment Port B */
TFLG2 = 0x80; /* Clear timer interrupt flag */

