
 EE 308/MENG 483 Spring 2017

 Setting and clearing bits in C
 Using pointers in C

o Program to count the number of negative numbers in an
area of memory

 Introduction to the MC9S12 Hardware Subsystems
o The MC9S12 timer subsystem

 EE 308/MENG 483 Spring 2017

Operators in C

Operator | Action | example

| | Bitwise OR %00001010 | %01011111 = % 01011111
& | Bitwise AND %00001010 & %01011111 = % 00001010
^ | Bitwise XOR %00001010 ^ %01011111 = % 01010101
~ | Bitwise COMP ~%00000101 = %11111010
% | Modulo 10 % 8 = 2

|
|| | Logical OR %00000000 || %00100000 = 1
&& | Logical AND %11000000 && %00000011 = 1

 %11000000 && %00000000 = 0

Setting and Clearing Bits in C

Assembly | C action

bset DDRB,$0F | DDRB = DDRB | 0x0f; Set 4 LSB of DDRB
bclr DDRB,$F0 | DDRB = DDRB & ~0xf0; Clear 4 MSB of DDRB

 |
l1: brset PTB,$01,l1 | while ((PTB & 0x01) == 0x01) Wait until bit clear

 |
l2: brclr PTB,$02,l2 | while ((PTB & 0x02) == 0x00) Wait until bit set

 EE 308/MENG 483 Spring 2017

Pointers in C

To read a byte from memory location 0xE000:

var = *(char *) 0xE000;

To write a 16-bit word to memory location 0xE002:

*(int *) 0xE002 = var;

 EE 308/MENG 483 Spring 2017

Program to count the number of negative numbers in an array
in memory

/* Program to count the number of negative numbers in memory *
 Start at 0xE000, go through 0xEFFF
 Treat the numbers as 8-bit
*/
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

unsigned short num_neg; /* Make num_neg global so we can */
/* find it in memory use type int so */
/* can hold value larger than 256 */
/* Unsigned because number cannot */
/* be negative */

main()
{

char *ptr,*start,*end;

start = *(char *) 0xE000; /* Address of first element */
end = *(char *) 0xEFFF; /* Address of last element */

num_neg = 0;

for (ptr = start; ptr <= end; ptr = ptr+1)
{

if (*ptr < 0) num_neg = num_neg + 1;
}
_ _asm(swi); /* Exit to DBug-12 */

}

 EE 308/MENG 483 Spring 2017

Hello, World!

• Here is the standard ”hello, world” program:

#include <stdio.h>
main()
{

printf("hello, worl!d\r\n");
}

• To write the ”hello, world” program, you need to use the printf()
function.

• The printf() function is normally a library function

• In CodeWarrior, you can access printf() by doing the following:

1. In your C program, add the following lines:
#include <stdio.h>
#include <termio.h>

2. In CodeWarrior, select Project, Add Files, and select the file
termio.c. This is in the CodeWarrior library, which is in the
following location on my computer:

c:\Program Files\Freescale\CWS12v5.1\lib\hc12c\src

 EE 308/MENG 483 Spring 2017

Your C program will look like this:

#include <stdio.h>
#include <termio.h>
main()
{

printf("hello, world!\r\n");
_ _asm(swi);

}

• The above program is about 1,500 bytes long.

• To load the program into your Dragon12 board, you will have to
edit the .s19 file and remove the first line which starts with a S0.
The last line of the .s19 file looks this:

S105FFFE2029B4

This tells the loader to put the 16-bit number 2029 into address
FFFE. The address FFFE is in flash EEPROM, and the loader will
not be able to write there. You can leave the line in, in which case
DBug12 will give you the warning "Can’t Write Target Memory",
or you can remove this line from the .s19 file to avoid getting the
warning. (If you could put 2029 into address FFFE, your MC9S12
would start executing the code at address 0x2029 when you reset
the board.)

 EE 308/MENG 483 Spring 2017

• You can print out variables as well. Here is an example:

#include <stdio.h>
#include <termio.h>
main()
{

int i;
for (i=0;i<100;i++) printf("i = %d\r\n",i);
_ _asm(swi);

}

 EE 308/MENG 483 Spring 2017

Introduction to the MC9S12 Timer Subsystem

• The MC9S12 has a 16-bit counter that normally runs with a 24
MHz clock.

• Complete information on the MC9S12 timer subsystem can be
found in the ECT_16B8C Block User Guide. ECT stands for
Enhanced Capture Timer.

• When you reset the MC9S12, the clock to the timer subsystem is
initially turned off to save power.

– To turn on the clock you need to write a 1 to Bit 7 of
register TSCR1 (Timer System Control Register 1) at
address 0x0046.

• The clock starts at 0x0000, counts up (0x0001, 0x0002, etc.) until
it gets to 0xFFFF. It rolls over from 0xFFFF to 0x0000, and
continues counting forever (until you turn the counter off or reset
the MC9S12).

• It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the
counter to count from 0x0000 to 0xFFFF and roll over to 0x0000.

• To determine the time an event happens, you can read the value
of the clock (by reading the 16-bit TCNT (Timer Count Register)
at address 0x0044 (page 28 of MC9S12DP256B).

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

Timer inside the MC9S12:

When you enable the timer (by writing a 1 to bit 7 of TSCR1), you
connect a 24−MHz oscillator to a 16−bit counter.

You can read the counter at address TCNT.

The counter will start at 0, will count to 0xFFFF, then will roll over
to 0x0000. It will take 2.7307 ms for this to happen.

To enable timer on MC9S12, set Bit 7 of register TCSR1:

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;

Why using the OR operator and not
TSCR1=0x80?

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

• To put in a delay of 2.7307 ms, you could wait from one reading
of 0x0000 to the next reading of 0x0000.

• Problem: You cannot read the TCNT register quickly enough to
make sure you will see the 0x0000.

To put in a delay for 2.7307 ms, could watch timer until
TCNT == 0x0000:

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;
l1: ldd TCNT [3] while (TCNT != 0x0000) ;

bne l1 [3/1]

Problem: You might see 0xFFFF and 0x0001, and miss
0x0000

• Solution: The MC9S12 has built-in hardware which will set a
flip-flop every time the counter rolls over from 0xFFFF to 0x0000.

• To wait for 2.7307 ms, just wait until the flip-flop is set, then
clear the flip-flop, and wait until the next time the flip-flop is set.

• You can find the state of the flip-flop by looking at bit 7 (the
Timer Overflow Flag (TOF) bit) of the Timer Flag Register 2
(TFLG2) register at address 0x004F.

 EE 308/MENG 483 Spring 2017

• You can clear the flip-flop by writing a 1 to the TOF bit of
TFLG2.

Solution: When timer overflows, it latches a 1 into a flip−flop.
Now when timer overflows (goes from 0xFFFF to 0x0000), Bit 7
of TFLG2 register is set to one. Can clear register by writing a 1 to
Bit 7 of TFLG2 register.

 bset TSCR1,#$80 ; Enable timer
l1: brclr TFLG2,#$80,l1 ; Wait for Bit 7 of TFLG2 is set
 ldaa #$80

 …
 program …
 …

 staa TFGL2 ; Clear TOF flag

TSCR1 = TSCR1 | 0x80; //Enable timer
while ((TFLG2 & 0x80) == 0) ; // Wait for TOF

…
program …
…

TFLG2 = 0x80; // Clear TOF

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

• Another problem: Sometimes you may want to delay longer
than 2.7307 ms, or time an event which takes longer than 2.7307
ms. This is hard to do if the counter rolls over every 2.7307 ms.

• Solution: The MC9S12 allows you to slow down the clock which
drives the counter.

• You can slow down the clock by dividing the 24 MHz clock by
2, 4, 8, 16, 32, 64 or 128.

• You do this by writing to the prescaler bits (PR2:0) of the Timer
System Control Register 2 (TSCR2) Register at address 0x004D.

2.7307 ms will be too short if you want to see lights flash. You can
slow down clock by dividing it before you send it to the 16−bit
counter. By setting prescaler bits PR2,PR1,PR0 of TSCR2 you
can slow down the clock:

PR Divide Freq Overflow Rate
000 1 24 MHz 2.7307 ms
001 2 12 MHz 5.4613 ms
010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms
110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

 EE 308/MENG 483 Spring 2017

To set up timer so it will overflow every 87.3813 ms:

bset TSCR1,#$80
ldaa #$05
staa TSCR2

TSCR1 = TSCR1 | 0x80;
TSCR2 = 0x05;

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

Setting and Clearing Bits in C

• To put a specific number into a memory location or register (e.g.,
to put 0x55 into PORTA):

movb #$55,PORTA PORTA = 0x55;

• To set a particular bit of a register (e.g., set Bit 4 of PORTA)
while leaving the other bits unchanged do a bitwise OR of the
register and a mask which has a 1 in the bit(s) you want to set, and
a 0 in the other bits:

bset PORTA,#$10 PORTA = PORTA | 0x10;

• To clear a particular bit of a register (e.g., clear Bit 5 of PORTA)
while leaving the other bits unchanged do a bitwise AND of the
register and a mask which has a 0 in the bit(s) you want to clear,
and a 1 in the other bits. You can construct this mask by
complementing a mask which has a 1 in the bit(s) you want to set,
and a 0 in the other bits:

bclr PORTA,#$20 PORTA = PORTA & 0xDF;

 PORTA = PORTA & ~0x20;

Using ~0x20 is better than using 0xDF because it is less
likely that you will make a mistake when complementing 0x20 in
your head.

 EE 308/MENG 483 Spring 2017

• To change several bits of a register, AND the register with 1’s in
the bits you want to leave unchanged, then OR the result with 1’s
in the bits you want to set, and 0’s in the bits you want to clear. For
example, to set bits 2 and 0, and clear bit 1 (write 101 to bits 2-0)
of TSCR2, do the following:

bclr TSCR2,#$02 TSCR2 = TSCR2 & ~0x02;
bset TSCR2,#05 TSCR2 = TSCR2 | 0x05;

or

TSCR2 = (TSCR2 & ~0x02) | 0x05;

• Write to all bits of a register when you know what all bits should
be, such as when you initialize it. Set or clear bits when you want
to change only one or a few bits and leave the others unchanged.

 EE 308/MENG 483 Spring 2017

C Program to implement a delay

#include <hidef.h>
#include "hcs12.h"

void delay(void);

main()
{

TSCR1 = TSCR1 | 0x80; /* Enable timer subsystem */
TSCR2 = 0x05; /* Set overflow time to 87 ms */
TFLG2 = 0x80; /* Make sure TOF bit clear */
while (1) {

PORTB = PORTB + 1;
delay();

}
}

void delay(void)
{

while ((TFLG2 & 0x80) == 0x00) ; /* Wait for timer */
/* overflow */

TFLG2 = 0x80; /* Clear TOF bit */
}

• Problem: Cannot do anything while waiting

• Solution: Interrupt – can do other things, and hardware will
signal processor when overflow occurs

• Need to understand how processor handles exceptions – resets
and interrupts

 EE 308/MENG 483 Spring 2017

• Start by looking at what happens when the MC9S12 is reset

What Happens When You Reset the MC9S12?

• What happens to the MC9S12 when you turn on power or push
the reset button?

• How does the MC9S12 know which instruction to execute first?

• On reset the MC9S12 loads the PC with the address located at
address 0xFFFE and 0xFFFF.

• Here is what is in the memory of our MC9S12:

• On reset or power-up, the first instruction your MC9S12 will
execute is the one located at address 0xF000.

 EE 308/MENG 483 Spring 2017

Introduction to Interrupts

Can implement a delay by waiting for the TOF flag to become set:

void delay(void)
{

while ((TFLG2 & 0x80) == 0) ;
TFLG2 = 0x80;

}

Problem: Can’t do anything else while waiting.

Solution: Use an interrupt to tell you when the timer overflow has
occurred.

Interrupt: Allows the HCS12 to do other things while waiting for
an event to happen. When the event happens, tell HCS12 to take
care of event, then go back to what it was doing.

What happens when HCS12 gets an interrupt: HCS12
automatically jumps to part of the program which tells it what to
do when it receives the interrupt (Interrupt Service Routine).

How does HCS12 know where the ISR is located: A set of
memory locations called Interrupt Vectors tell the HCS12 the
address of the ISR for each type of interrupt.

 EE 308/MENG 483 Spring 2017

How does HCS12 know where to return to: Return address
pushed onto stack before HCS12 jumps to ISR. You use the RTI
(Return from Interrupt) instruction to pull the return address off of
the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed
onto stack before jumping to ISR, and pulled off the stack before
returning to program. When you execute the RTI instruction at the
end of the ISR, the registers are pulled off of the stack.

What happens if you get an interrupt while in an ISR: MC9S12
disables interrupts (sets I bit of CCR) before it starts executing
ISR.

To Return from the ISR You must return from the ISR using the
RTI instruction. The RTI instruction tells the HCS12 to pull all the
registers off of the stack and return to the address where it was
processing when the interrupt occurred.

 EE 308/MENG 483 Spring 2017

How to generate an interrupt when the timer overflows

To generate a TOF interrupt:

Enable timer (set Bit 7 of TSCR1)
Set prescaler (Bits 2:0 of TSCR2)
Enable TOI interrupt (set Bit 7 of TSCR2)
Enable interrupts (clear I bit of CCR)

Inside TOF ISR:

Take care of event
Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Return with RTI

 EE 308/MENG 483 Spring 2017

#include <hidef.h>
#include "hcs12.h"

interrupt void toi_isr(void);

main()
{

_ _asm(sei); /* Disable interrupts */
DDRB = 0xff; /* Make Port B output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x85; /* Enable timer overflow interrupt, set */

 /* prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */
_ _asm(cli); /* Enable interrupts (clear I bit) */
while (1)
{

/* Put code here to do things */
}

}

void interrupt toi_isr(void)
{

PORTB = PORTB + 1; /* Increment Port B */
TFLG2 = 0x80; /* Clear timer interrupt flag */

}

